TAILIEUCHUNG - Lie symmetry analysis and exact solutions of the Sawada-Kotera equation

In the present paper, the Sawada–Kotera equation is considered by Lie symmetry analysis. All of the geometric vector fields to the Sawada–Kotera equation are obtained, and then the symmetry reductions and exact solutions of the Sawada–Kotera equation are investigated. Our results show that symmetry analysis is a very efficient and powerful technique in finding the solution of the proposed equation. | Turk J Math (2017) 41: 158 – 167 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Lie symmetry analysis and exact solutions of the Sawada–Kotera equation Youwei ZHANG∗ School of Mathematics and Statistics, Hexi University, Zhangye, . China Received: • Accepted/Published Online: • Final Version: Abstract: In the present paper, the Sawada–Kotera equation is considered by Lie symmetry analysis. All of the geometric vector fields to the Sawada–Kotera equation are obtained, and then the symmetry reductions and exact solutions of the Sawada–Kotera equation are investigated. Our results show that symmetry analysis is a very efficient and powerful technique in finding the solution of the proposed equation. Key words: Sawada–Kotera equation, Lie symmetry analysis, power series solution, hyperbolic function method, trial equation method, exact solution 1. Introduction Recently, the mathematics and physics fields have devoted considerable effort to the study of solutions to ordinary and partial differential equations (ODEs and PDEs). Among many powerful methods for solving equations, Lie symmetry analysis provides an effective procedure for integrability and conservation laws, reducing equations and exact solutions of a wide and general class of differential systems representing real physical problems [14, 18]. Sinkala et al. [17] performed the group classification of a bond-pricing PDE of mathematical finance to discover the combinations of arbitrary parameters that allow the PDE to admit a nontrivial symmetry Lie algebra, and they computed the admitted Lie point symmetries, identified the corresponding symmetry Lie algebra, and solved the PDE. Under the condition that the symmetry group of the PDE is nontrivial, it contains a standard integral transform of the fundamental solution for PDEs, and a fundamental solution can be reduced to inverting a Laplace .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.