TAILIEUCHUNG - Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection

We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose shape operator A is generalized Tanaka–Webster recurrent if the principal curvature of the structure vector field is not equal to trace(A). | Turk J Math (2015) 39: 313 – 321 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka–Webster connection 1,∗ ´ Juan de Dios PEREZ , Young Jin SUH2 , Changhwa WOO2 Department of Geometry and Topology, University of Granada, Granada, Spain 2 Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea 1 Received: • Accepted/Published Online: • Printed: Abstract: We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose shape operator A is generalized Tanaka–Webster recurrent if the principal curvature of the structure vector field is not equal to trace(A). Key words: Real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized Tanaka–Webster connection, recurrent shape operator 1. Introduction The generalized Tanaka–Webster connection (from now on, g-Tanaka–Webster connection) for contact metric manifolds was introduced by Tanno ([13]) as a generalization of the connection defined by Tanaka in [12] and, independently, by Webster in [14]. This connection coincides with the Tanaka–Webster connection if the associated CR-structure is integrable. The Tanaka–Webster connection is defined as a canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real hypersurface M in a K¨ahler manifold has an (integrable) CR-structure associated with the almost contact structure (ϕ, ξ, η, g) induced on M by the K¨ahler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian. Cho [4] and Tanno [13] defined the g-Tanaka–Webster connection for a real hypersurface of a K¨ahler manifold by ˆ (k) Y = ∇X Y + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY ∇ X () for any X, Y tangent to M , where ∇ denotes the Levi-Civita connection on M ,

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.