TAILIEUCHUNG - Pointwise slant submersions from cosymplectic manifolds

In this paper, we characterize the pointwise slant submersions from cosymplectic manifolds onto Riemannian manifolds and give several examples. | Turk J Math (2016) 40: 582 – 593 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Pointwise slant submersions from cosymplectic manifolds ¨ 2,∗ Sezin AYKURT SEPET1 , Mahmut ERGUT Department of Mathematics, Arts and Science Faculty, Ahi Evran University, Kır¸sehir, Turkey 2 Department of Mathematics, Arts and Science Faculty, Namık Kemal University, Tekirda˘ g, Turkey 1 Received: • Accepted/Published Online: • Final Version: Abstract: In this paper, we characterize the pointwise slant submersions from cosymplectic manifolds onto Riemannian manifolds and give several examples. Key words: Riemannian submersion, almost contact metric manifold, cosymplectic manifold, pointwise slant submersion 1. Introduction An important topic in differential geometry is the Riemannian submersions between Riemannian manifolds introduced by O’Neill [12] and Gray [5]. Such submersions were generalized by Watson to almost Hermitian manifolds by proving that the base manifold and each fiber have the same kind of structure as the total space in most cases [21]. Recently, many works considering different conditions on Riemannian submersion have been done (see [3, 4, 6, 7, 8, 13, 15, 17, 19, 20]). Sahin [18] introduced slant submersions from almost Hermitian manifolds onto Riemannian manifolds in such a way that let π be a Riemannian submersion from an almost Hermitian manifold (M1 , g1 , J1 ) onto a Riemannian manifold (M2 , g2 ) . If for any nonzero vector X ∈ Γ (ker π∗ ), the angle θ(X) between JX and the space ker π∗ is a constant, . it is independent of the choice of the point p ∈ M1 and choice of the tangent vector X in ker π∗ , then we say that π is a slant submersion. In this case, the angle θ is called the slant angle of the slant submersion. He gave some examples and investigated the geometry of leaves of the distributions for such submersions. Furthermore, Lee .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.