TAILIEUCHUNG - Central configurations in the collinear 5-body problem

We study the inverse problem of central configuration of collinear general 4-and 5-body problems. A central configuration for n-body problems is formed if the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration. | Turkish Journal of Mathematics Research Article Turk J Math (2014) 38: 576 – 585 ¨ ITAK ˙ c TUB ⃝ doi: Central configurations in the collinear 5-body problem Muhammad SHOAIB1,∗, Anoop SIVASANKARAN2 , Abdulrehman KASHIF1 1 Department of Mathematical Sciences, University of Ha’il, Ha’il, Saudi Arabia 2 Department of Applied Mathematics and Sciences, Khalifa University, Sharjah, United Arab Emirates Received: • Accepted: • Published Online: • Printed: Abstract: We study the inverse problem of central configuration of collinear general 4- and 5-body problems. A central configuration for n -body problems is formed if the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration. In the 3-body problem, it is always possible to find 3 positive masses for any given 3 collinear positions given that they are central. This is not possible for more than 4-body problems in general. We consider a collinear 5-body problem and identify regions in the phase space where it is possible to choose positive masses that will make the configuration central. In the symmetric case we derive a critical value for the central mass above which no central configurations exist. We also show that in general there is no such restriction on the value of the central mass. Key words: Central configuration, n-body problem, inverse problem of central configuration 1. Introduction Central configurations are one of the most important and fundamental topics in the study of few-body problems. Therefore, few-body problems in general and central configurations in particular have attracted a lot of attention over the years [4],[5],[10]. Studies on the central configuration of n -body problems (with n ≥ 4 ) are limited due to the greater complexity of problems involving higher numbers of bodies. For n ≥ 4 , the main focus of the available .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.