TAILIEUCHUNG - Alternative Polynomial and Holomorphic Dunford-Pettis properties

Alternatives to the Polynomial Dunford-Pettis property and the Holomorphic Dunford-Pettis property, called the PDP1 and HDP1 properties, respectively, are introduced. These are shown to be equivalent to the DP1 property, an alternative Dunford-Pettis property previously introduced by the author, thus mirroring the equivalence of the three original properties. | Turk J Math 23 (1999) , 407 – 415. ¨ ITAK ˙ c TUB ALTERNATIVE POLYNOMIAL AND HOLOMORPHIC DUNFORD-PETTIS PROPERTIES ∗ Walden Freedman Abstract Alternatives to the Polynomial Dunford-Pettis property and the Holomorphic Dunford-Pettis property, called the PDP1 and HDP1 properties, respectively, are introduced. These are shown to be equivalent to the DP1 property, an alternative Dunford-Pettis property previously introduced by the author, thus mirroring the equivalence of the three original properties. Introduction In [4], R. Ryan proved that the Dunford-Pettis property, the Polynomial DunfordPettis property, and the Holomorphic Dunford-Pettis property are all equivalent. In [1], a property closely related to the Dunford-Pettis property, called the DP1 property, is introduced and defined as follows: A Banach space X has the DP1 property if for any Banach space Y and any weakly compact linear operator T : X → Y , if xn → x weakly in X with kxn k = kxk = 1 for all n, then T xn → T x in norm in Y . We will consider two alternative properties, the PDP1 property and the HDP1 property, in the same spirit as [4], and show that like the original properties, DP1, PDP1 and HDP1 are all equivalent. Some applications to Banach algebras are also given. Notation and Background Throughout the paper, X and Y will denote Banach spaces over the field of complex numbers. We identify X with its image in X ∗∗ under its canonical embedding in X ∗∗ . The Banach space of all bounded linear operators from X to Y will be denoted L(X; Y ). Given x0 ∈ X and r > 0, the open and closed balls centered at x0 with radius r will be denoted ∆(x0 , r) and ∆(x0 , r), respectively. By the term ‘operator’, we will always ∗ This paper is a part of the author’s doctoral dissertation at the University of California, Santa Barbara. 407 FREEDMAN mean a bounded linear operator. Given f ∈ X and a ∈ X ∗ we often write f(a) or hf, ai for the evaluation of a on f. The Banach space of all sequences in Y that .

TÀI LIỆU MỚI ĐĂNG
337    150    2    12-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.