TAILIEUCHUNG - Adaptive-backstepping position control based on recurrent-fwnns for mobile manipulator robot

In this paper, we proposed an adaptive-backstepping position control system for mobile manipulator robot (MMR). By applying recurrent fuzzy wavelet neural networks (RFWNNs) in the position-backstepping controller, the unknown-dynamics problems of the MMR control system are relaxed. | Journal of Science and Technology 54 (3A) (2016) 23-38 ADAPTIVE-BACKSTEPPING POSITION CONTROL BASED ON RECURRENT-FWNNS FOR MOBILE MANIPULATOR ROBOT Mai Thang Long*, Tran Huu Toan Faculty of Electronics Technology, Industrial University of HCMC, 12 Nguyen Van Bao, Go Vap, Hochiminh * Email: maithanglong@ Received: 16 June 2016; Accepted for publication: 26 July 2016 ABSTRACT In this paper, we proposed an adaptive-backstepping position control system for mobile manipulator robot (MMR). By applying recurrent fuzzy wavelet neural networks (RFWNNs) in the position-backstepping controller, the unknown-dynamics problems of the MMR control system are relaxed. In addition, an adaptive-robust compensator is proposed to eliminate uncertainties that consist of approximation errors and uncertain disturbances. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. The effectiveness of the proposed method is verified by comparative simulation results. Keywords: backstepping controller, recurrent fuzzy wavelet, neural networks, adaptive robust control, mobile-manipulator robot. 1. INTRODUCTION The MMR has been applied in a variety of applications in industrial sectors, such as mining, outdoor exploration, and planetary sciences. The MMR structure consists of arms and a mobile platform with kinematic and dynamic constraints, which make it a highly coupled dynamic nonlinear system. Therefore, the traditional model control methods-based feedback techniques with the assumptions of known dynamics [1] are not easy to utilize in the MMR control system. The method using adaptive model-free controllers-based fuzzy/neural networks (NNs) is a useful tool to deal with the uncertain dynamics of the MMR [2]. With the selflearning characteristic, good approximation capability [3], the NNs have been applied successfully in robotic control applications [4, 5]. Fuzzy NNs (FNNs), the combination of the NNs and fuzzy techniques, contains .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.