TAILIEUCHUNG - CHƯƠNG 6: BÀI TOÁN ĐƯỜNG ĐI NGẮN NHẤT

Các khái niệm Trong chương này chúng ta chỉ xét đồ thị có hướng G =(V,E), | Thêm vào đồ thị hai đỉnh 0 và n+1 tương ứng với hai sự kiện đặc biệt: đỉnh 0 tương ứng với công đoạn lễ khởi công, nó phải được thực hiện trước tất cả các công đoạn khác, và đỉnh n+1 tương ứng với công đoạn cắt băng khánh thành công trình, nó phải được thực hiện sau các công đoạn, với t[0]=t[n+1]=0 (trên thực tế chỉ cần nối đỉnh 0 với tất cả các đỉnh có bán bậc bằng 0 và nối tất cả các đỉnh có bán bậc ra bằng 0 với đỉnh n+1). Gọi đồ thị thu được là G. Rõ ràng bài toán đặt ra dẫn về bài toán tìm đường đi ngắn nhất từ đỉnh 0 đến tất cả các đỉnh còn lại trên đồ thị G. Do đồ thị G rõ ràng là không chứa chu trình, nên để giải bài toán đặt ra có thể áp dụng các thuật toán mô tả trên, chỉ cần đổi dấu tất cả các trọng số trên các cung thành dấu ngược lại, hoặc đơn giản hơn chỉ cần đổi toán tử Min trong thuật toán Critcal_Path thành toán tử Max. Kết thúc thuật toán, chúng ta thu được d[v] là độ dài đường đi dài nhất từ đỉnh 0 đến đỉnh v. Khi đó d[v] cho ta thời điểm sớm nhất có thể bắt đầu thực hiện công đoạn v, nói riêng d[n+1] là thời điểm sớm nhất có thể cắt băng khánh thành, tức là thời điểm sớm nhất có thể hoàn thành toàn bộ công trình.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.