TAILIEUCHUNG - Báo cáo khoa học: "Learning to Interpret Utterances Using Dialogue History"

We describe a methodology for learning a disambiguation model for deep pragmatic interpretations in the context of situated task-oriented dialogue. The system accumulates training examples for ambiguity resolution by tracking the fates of alternative interpretations across dialogue, including subsequent clarificatory episodes initiated by the system itself. We illustrate with a case study building maximum entropy models over abductive interpretations in a referential communication task. | Learning to Interpret Utterances Using Dialogue History David DeVault Institute for Creative Technologies University of Southern California Marina del Rey CA 90292 devault@ Matthew Stone Department of Computer Science Rutgers University Piscataway NJ 08845-8019 Abstract We describe a methodology for learning a disambiguation model for deep pragmatic interpretations in the context of situated task-oriented dialogue. The system accumulates training examples for ambiguity resolution by tracking the fates of alternative interpretations across dialogue including subsequent clarificatory episodes initiated by the system itself. We illustrate with a case study building maximum entropy models over abductive interpretations in a referential communication task. The resulting model correctly resolves 81 of ambiguities left unresolved by an initial handcrafted baseline. A key innovation is that our method draws exclusively on a system s own skills and experience and requires no human annotation. 1 Introduction In dialogue the basic problem of interpretation is to identify the contribution a speaker is making to the conversation. There is much to recognize the domain objects and properties the speaker is referring to the kind of action that the speaker is performing the presuppositions and implicatures that relate that action to the ongoing task. Nevertheless since the seminal work of Hobbs et al. 1993 it has been possible to conceptualize pragmatic interpretation as a unified reasoning process that selects a representation of the speaker s contribution that is most preferred according to a background model of how speakers tend to behave. In principle the problem of pragmatic interpretation is qualitatively no different from the many problems that have been tackled successfully by data-driven models in NLP. However while researchers have shown that it is sometimes possible to annotate corpora that capture features of in terpretation to .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.