TAILIEUCHUNG - Đề thi học sinh giỏi cấp trường khối 10 - 11 - 12 trường THPT Trần Quốc Tuấn kèm đáp án

Để giúp các bạn có thêm phần tự tin cho kì thi học sinh giỏi sắp tới và đạt kết quả cao. Dưới đây là các đề thi học sinh giỏi cấp trường khối 10 - 11 - 12 của trường THPT Trần Quốc Tuấn kèm đáp án mời các bạn tham khảo. | SỞ GIÁO DỤC ĐÀO TẠO QUẢNG NGÃI TRƯỜNG THPT TRẦN QUỐC TUẤN ĐỀ CHÍNH THỨC KỲ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG NĂM HỌC 2011 - 2012 MÔN TOÁN - KHỐI 10 Thời gian làm bài 180 phút Bài 1 5 điểm 1 Giải phương trình 3 x - 1 3 x 1 V2x 2 Giải hệ phương trình a x2 4 ựx2 - 2xy y2 1 ựy2 - 6y 10 5 bx277 x y . Bài 2 5 điểm 1 Lập bảng biến thiên và vẽ đồ thị hàm số y x 2 x 1 x 1 2 Tùy theo giá trị của a tìm giá trị nhỏ nhất của hàm số f x x 1 x -1 x - a Bài 3 5 điểm Cho phương trình x2 -3x 1 mjx x x x 1 73 1 Giải phương trình khi m 3 2 Tìm m để phương trình có số lẻ nghiệm thực. Bài 4 5 điểm Cho đường tròn O cố định và một đường thẳng d không cắt O . Từ điểm A di động trên d ta dựng hai tiếp tuyến AB và AC với đường tròn O B C là tiếp điểm . Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định khi A thay đổi trên d . -----------------hết---------------------- KỲ THI HSG CẤP TRƯỜNG ĐÁP ÁN MÔN TOÁN - KHỐI 10 Bài 1 5 điểm 1 2 5 điểm Lập phương hai vế phương trình ta được 2X 33XX -1 V2X 2X3 x 2 3V2VXX -1 - 2 X2 0 x 0 2 3 2-ựXX -1 - 2XX 0 3V2VX2 -1 2 XX -1 54 X2 -1 8 X2 -1 3 1đ 1 5đ X 1 X 1 27 2 2 2 5đ Đặt a x 2 b y - x 1 c 3 - y 1 a b 5 Từ phương trình 1 suy ra a b c a b c Đẳng thức xẩy ra khi và chỉ khi a b c cùng hướng 3 X 2 9 y 4 . 9 Thay vào 2 ta được z -10 ưâ .An Wâm 3 9 10. Hệ có nghiệm 2 4 - 4 Bài2 5 đ 1 Lập bảng biến thiên Vẽ đồ thị X y-x 3-y I 2 1 1 1đ 1đ 0 5đ 1đ 1đ 2 Chứng minh được Với a b c thì mìnf x f b 1đ Vậy với a -1 thì mìn x f -1 1- a Với -1 a 1 thì mìn x f a 2 Với 1 a thì mìnf x f 1 2a 2đ Bài 3 5 đ Ta có x4 x2 1 x2 1 2 - x2 x2 x 1 x2- x 1 Và x2 - 3x 1 2 x2 - x 1 - x2 x 1 1đ Đặt t . x với t -43 ta được phương trình x2 x 1 3 2t2 - mt -1 0 1 4 ta có phương trình 2t2 33t-1 0 1 Với m t ệ V3 ừ 3 t - 3 thì x 1 3 1đ 1đ 3 Do phương trình 1 có hai nghiệm khác dấu ac 0 nên t1 0 t2 Từ t x x 1 x x 1 t2- 1 x2 t 1 x t - 1 0 Phương trình đã cho có số lé nghiệm khi pt có một nghiệm t 0 1đ t 1 m 1 pt có một nghiệm x 0 t2 - G 0 thì 0 V3 . V3 t m 3 3 . r . . s 3 t Ị 3 m 7 3 ___.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.