TAILIEUCHUNG - Báo cáo khoa học: "Parametric Models of Linguistic Count Data"

It is well known that occurrence counts of words in documents are often modeled poorly by standard distributions like the binomial or Poisson. Observed counts vary more than simple models predict, prompting the use of overdispersed models like Gamma-Poisson or Beta-binomial mixtures as robust alternatives. Another deficiency of standard models is due to the fact that most words never occur in a given document, resulting in large amounts of zero counts. We propose using zeroinflated models for dealing with this, and evaluate competing models on a Naive Bayes text classification task. Simple zero-inflated models can account for practically relevant. | Parametric Models of Linguistic Count Data Martin Jansche Department of Linguistics The Ohio State University Columbus OH 43210 USA jansche@ Abstract It is well known that occurrence counts of words in documents are often modeled poorly by standard distributions like the binomial or Poisson. Observed counts vary more than simple models predict prompting the use of overdispersed models like Gamma-Poisson or Beta-binomial mixtures as robust alternatives. Another deficiency of standard models is due to the fact that most words never occur in a given document resulting in large amounts of zero counts. We propose using zero-inflated models for dealing with this and evaluate competing models on a Naive Bayes text classification task. Simple zero-inflated models can account for practically relevant variation and can be easier to work with than overdispersed models. 1 Introduction Linguistic count data often violate the simplistic assumptions of standard probability models like the binomial or Poisson distribution. In particular the inadequacy of the Poisson distribution for modeling word token frequency is well known and robust alternatives have been proposed Mosteller and Wallace 1984 Church and Gale 1995 . In the case of the Poisson a commonly used robust alternative is the negative binomial distribution Pawitan 2001 which has the ability to capture extra-Poisson variation in the data in other words it is overdispersed compared with the Poisson. When a small set of parameters controls all properties of the distribution it is important to have enough parameters to model the relevant aspects of one s data. Simple models like the Poisson or binomial do not have enough parameters for many realistic applications and we suspect that the same might be true of log-linear models. When applying robust models like the negative binomial to linguistic count data like word occurrences in documents it is natural to ask to what extent the extra-Poisson variation has been .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.