TAILIEUCHUNG - Báo cáo khoa học: "Combining Multiple Knowledge Sources for Dialogue Segmentation in Multimedia Archives"

Automatic segmentation is important for making multimedia archives comprehensible, and for developing downstream information retrieval and extraction modules. In this study, we explore approaches that can segment multiparty conversational speech by integrating various knowledge sources (., words, audio and video recordings, speaker intention and context). In particular, we evaluate the performance of a Maximum Entropy approach, and examine the effectiveness of multimodal features on the task of dialogue segmentation. . | Combining Multiple Knowledge Sources for Dialogue Segmentation in Multimedia Archives Pei-Yun Hsueh School of Informatics University of Edinburgh Edinburgh UK EH8 9Wl Johanna D. Moore School of Informatics University of Edinburgh Edinburgh UK EH8 9Wl Abstract Automatic segmentation is important for making multimedia archives comprehensible and for developing downstream information retrieval and extraction modules. In this study we explore approaches that can segment multiparty conversational speech by integrating various knowledge sources . words audio and video recordings speaker intention and context . In particular we evaluate the performance of a Maximum Entropy approach and examine the effectiveness of multimodal features on the task of dialogue segmentation. We also provide a quantitative account of the effect of using ASR transcription as opposed to human transcripts. 1 Introduction Recent advances in multimedia technologies have led to huge archives of audio-video recordings of multiparty conversations in a wide range of areas including clinical use online video sharing services and meeting capture and analysis. While it is straightforward to replay such recordings finding information from the often lengthy archives is a more challenging task. Annotating implicit semantics to enhance browsing and searching of recorded conversational speech has therefore posed new challenges to the field of multimedia information retrieval. One critical problem is how to divide unstructured conversational speech into a number of locally coherent segments. The problem is important for two 1016 reasons First empirical analysis has shown that annotating transcripts with semantic information . topics enables users to browse and find information from multimedia archives more efficiently Banerjee et al. 2005 . Second because the automatically generated segments make up for the lack of explicit orthographic cues . story and paragraph .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.