TAILIEUCHUNG - Báo cáo khoa học: "A Maximum Expected Utility Framework for Binary Sequence Labeling"

We consider the problem of predictive inference for probabilistic binary sequence labeling models under F-score as utility. For a simple class of models, we show that the number of hypotheses whose expected Fscore needs to be evaluated is linear in the sequence length and present a framework for efficiently evaluating the expectation of many common loss/utility functions, including the F-score. This framework includes both exact and faster inexact calculation methods. | A Maximum Expected Utility Framework for Binary Sequence Labeling Martin Jansche jansche@ Abstract We consider the problem of predictive inference for probabilistic binary sequence labeling models under F-score as utility. For a simple class of models we show that the number of hypotheses whose expected F-score needs to be evaluated is linear in the sequence length and present a framework for efficiently evaluating the expectation of many common loss utility functions including the F-score. This framework includes both exact and faster inexact calculation methods. 1 Introduction Motivation and Scope The weighted F-score van Rijsbergen 1974 plays an important role in the evaluation of binary classifiers as it neatly summarizes a classifier s ability to identify the positive class. A variety of methods exists for training classifiers that optimize the F-score or some similar trade-off between false positives and false negatives precision and recall sensitivity and specificity type I error and type II error rate etc. Among the most general methods are those of Mozer et al. 2001 whose constrained optimization technique is similar to those in Gao et al. 2006 Jansche 2005 . More specialized methods also exist for example for support vector machines Musicant et al. 2003 and for conditional random fields Gross et al. 2007 Suzuki et al. 2006 . All of these methods are about classifier training. In this paper we focus primarily on the related but orthogonal issue of predictive inference with a fully trained probabilistic classifier. Using the weighted F -score as our utility function predictive inference amounts to choosing an optimal hypothesis which maximizes the expected utility. We refer to this as Current affiliation Google Inc. Former affiliation Center of Computational Learning Systems Columbia University. 736 the prediction or decoding task. In general decoding can be a hard computational problem Casacuberta and de la Higuera 2000 Knight 1999 . In this .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.