TAILIEUCHUNG - Báo cáo khoa học: "Pairwise Document Similarity in Large Collections with MapReduce"

This paper presents a MapReduce algorithm for computing pairwise document similarity in large document collections. MapReduce is an attractive framework because it allows us to decompose the inner products involved in computing document similarity into separate multiplication and summation stages in a way that is well matched to efficient disk access patterns across several machines. On a collection consisting of approximately 900,000 newswire articles, our algorithm exhibits linear growth in running time and space in terms of the number of documents. . | Pairwise Document Similarity in Large Collections with MapReduce Tamer Elsayed Jimmy Lin and Douglas W. Oard Human Language Technology Center of Excellence and UMIACS Laboratory for Computational Linguistics and Information Processing University of Maryland College Park MD 20742 telsayed jimmylin oard @ Abstract This paper presents a MapReduce algorithm for computing pairwise document similarity in large document collections. MapReduce is an attractive framework because it allows us to decompose the inner products involved in computing document similarity into separate multiplication and summation stages in a way that is well matched to efficient disk access patterns across several machines. On a collection consisting of approximately 900 000 newswire articles our algorithm exhibits linear growth in running time and space in terms of the number of documents. 1 Introduction Computing pairwise similarity on large document collections is a task common to a variety of problems such as clustering and cross-document coreference resolution. For example in the PubMed search engine 1 which provides access to the life sciences literature a more like this browsing feature is implemented as a simple lookup of documentdocument similarity scores computed offline. This paper considers a large class of similarity functions that can be expressed as an inner product of term weight vectors. For document collections that fit into randomaccess memory the solution is straightforward. As collection size grows however it ultimately becomes necessary to resort to disk storage at which point aligning computation order with disk access patterns becomes a challenge. Further growth in the Department of Computer Science t The iSchool College of Information Studies 1http PubMed document collection will ultimately make it desirable to spread the computation over several processors at which point interprocess communication becomes a second potential bottleneck for which

TÀI LIỆU MỚI ĐĂNG
8    170    3    08-01-2025
28    165    1    08-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.