TAILIEUCHUNG - Báo cáo khoa học: "Investigating Pitch Accent Recognition in Non-native Speech"

Acquisition of prosody, in addition to vocabulary and grammar, is essential for language learners. However, it has received less attention in instruction. To enable automatic identification and feedback on learners’ prosodic errors, we investigate automatic pitch accent labeling for nonnative speech. We demonstrate that an acoustic-based context model can achieve accuracies over 79% on binary pitch accent recognition when trained on withingroup data. | Investigating Pitch Accent Recognition in Non-native Speech Gina-Anne Levow Computer Science Department University of Chicago ginalevow@ Abstract Acquisition of prosody in addition to vocabulary and grammar is essential for language learners. However it has received less attention in instruction. To enable automatic identification and feedback on learners prosodic errors we investigate automatic pitch accent labeling for nonnative speech. We demonstrate that an acoustic-based context model can achieve accuracies over 79 on binary pitch accent recognition when trained on within-group data. Furthermore we demonstrate that good accuracies are achieved in crossgroup training where native and nearnative training data result in no significant loss of accuracy on non-native test speech. These findings illustrate the potential for automatic feedback in computer-assisted prosody learning. 1 Introduction Acquisition of prosody in addition to vocabulary and grammar is essential for language learners. However intonation has been less-emphasized both in classroom and computer-assisted language instruction Chun 1998 . Outside of tone languages it can be difficult to characterize the factors that lead to non-native prosody in learner speech and it is difficult for instructors to find time for the one-on-one interaction that is required to provide feedback and instruction in prosody. To address these problems and enable automatic feedback to learners in a computer-assisted language learning setting we investigate automatic prosodic labelling of non-native speech. While many prior systems Teixeia et al. 2000 Tep-perman and Narayanan 2008 aim to assign a score to the learner speech we hope to provide more focused feedback by automatically identifying prosodic units such as pitch accents in English or tone in Mandarin to enable direct comparison with gold-standard native utterances. There has been substantial progress in automatic pitch accent recognition for native speech .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.