TAILIEUCHUNG - Báo cáo khoa học: "Semi-supervised latent variable models for sentence-level sentiment analysis"

We derive two variants of a semi-supervised model for fine-grained sentiment analysis. Both models leverage abundant natural supervision in the form of review ratings, as well as a small amount of manually crafted sentence labels, to learn sentence-level sentiment classifiers. The proposed model is a fusion of a fully supervised structured conditional model and its partially supervised counterpart. This allows for highly efficient estimation and inference algorithms with rich feature definitions. . | Semi-supervised latent variable models for sentence-level sentiment analysis Oscar Tackstrom SICS Kista Uppsala University Uppsala oscar@ Ryan McDonald Google Inc. New York ryanmcd@ Abstract We derive two variants of a semi-supervised model for fine-grained sentiment analysis. Both models leverage abundant natural supervision in the form of review ratings as well as a small amount of manually crafted sentence labels to learn sentence-level sentiment classifiers. The proposed model is a fusion of a fully supervised structured conditional model and its partially supervised counterpart. This allows for highly efficient estimation and inference algorithms with rich feature definitions. We describe the two variants as well as their component models and verify experimentally that both variants give significantly improved results for sentence-level sentiment analysis compared to all baselines. 1 Sentence-level sentiment analysis In this paper we demonstrate how combining coarse-grained and fine-grained supervision benefits sentence-level sentiment analysis - an important task in the field of opinion classification and retrieval Pang and Lee 2008 . Typical supervised learning approaches to sentence-level sentiment analysis rely on sentence-level supervision. While such fine-grained supervision rarely exist naturally and thus requires labor intensive manual annotation effort Wiebe et al. 2005 coarse-grained supervision is naturally abundant in the form of online review ratings. This coarse-grained supervision is of course less informative compared to fine-grained supervision however by combining a small amount of sentence-level supervision with a large amount of document-level supervision we are able to substantially improve on the sentence-level classification task. Our work combines two strands of research models for sentiment analysis that take document structure into account 569 and models that use latent variables to learn unobserved phenomena from .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.