TAILIEUCHUNG - Báo cáo khoa học: "Fully Unsupervised Word Segmentation with BVE and MDL"

Department of Computer Science University of Arizona Tucson, AZ 85721 {dhewlett,cohen}@ Abstract Several results in the word segmentation literature suggest that description length provides a useful estimate of segmentation quality in fully unsupervised settings. However, since the space of potential segmentations grows exponentially with the length of the corpus, no tractable algorithm follows directly from the Minimum Description Length (MDL) principle. Therefore, it is necessary to generate a set of candidate segmentations and select between them according to the MDL principle. We evaluate several algorithms for generating these candidate segmentations on a range of natural language corpora, and show that the. | Fully Unsupervised Word Segmentation with BVE and MDL Daniel Hewlett and Paul Cohen Department of Computer Science University of Arizona Tucson AZ 85721 dhewlett cohen @ Abstract Several results in the word segmentation literature suggest that description length provides a useful estimate of segmentation quality in fully unsupervised settings. However since the space of potential segmentations grows exponentially with the length of the corpus no tractable algorithm follows directly from the Minimum Description Length MDL principle. Therefore it is necessary to generate a set of candidate segmentations and select between them according to the MDL principle. We evaluate several algorithms for generating these candidate segmentations on a range of natural language corpora and show that the Bootstrapped Voting Experts algorithm consistently outperforms other methods when paired with MDL. 1 Introduction The goal of unsupervised word segmentation is to discover correct word boundaries in natural language corpora where explicit boundaries are absent. Often unsupervised word segmentation algorithms rely heavily on parameterization to produce the correct segmentation for a given language. The goal of fully unsupervised word segmentation then is to recover the correct boundaries for arbitrary natural language corpora without explicit human parameterization. This means that a fully unsupervised algorithm would have to set its own parameters based only on the corpus provided to it. In principle this goal can be achieved by creating a function that measures the quality of a segmentation in a language-independent way and applying this function to all possible segmentations of 540 the corpora to select the best one. Evidence from the word segmentation literature suggests that description length provides a good approximation to this segmentation quality function. We discuss the Minimum Description Length MDL principle in more detail in the next section. Unfortunately

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.