TAILIEUCHUNG - Báo cáo khoa học: "Multilingual Pseudo-Relevance Feedback: Performance Study of Assisting Languages"

In a previous work of ours Chinnakotla et al. (2010) we introduced a novel framework for Pseudo-Relevance Feedback (PRF) called MultiPRF. Given a query in one language called Source, we used English as the Assisting Language to improve the performance of PRF for the source language. MulitiPRF showed remarkable improvement over plain Model Based Feedback (MBF) uniformly for 4 languages, viz., French, German, Hungarian and Finnish with English as the assisting language. | Multilingual Pseudo-Relevance Feedback Performance Study of Assisting Languages Manoj K. Chinnakotla Karthik Raman Pushpak Bhattacharyya Department of Computer Science and Engineering Indian Institute of Technology Bombay Mumbai India manoj karthikr pb @ Abstract In a previous work of ours Chinnakotla et al. 2010 we introduced a novel framework for Pseudo-Relevance Feedback PRF called MultiPRF. Given a query in one language called Source we used English as the Assisting Language to improve the performance of PRF for the source language. MulitiPRF showed remarkable improvement over plain Model Based Feedback MBF uniformly for 4 languages viz. French German Hungarian and Finnish with English as the assisting language. This fact inspired us to study the effect of any source-assistant pair on MultiPRF performance from out of a set of languages with widely different characteristics viz. Dutch English Finnish French German and Spanish. Carrying this further we looked into the effect of using two assisting languages together on PRF. The present paper is a report of these investigations their results and conclusions drawn therefrom. While performance improvement on MultiPRF is observed whatever the assisting language and whatever the source observations are mixed when two assisting languages are used simultaneously. Interestingly the performance improvement is more pronounced when the source and assisting languages are closely related . French and Spanish. 1 Introduction The central problem of Information Retrieval IR is to satisfy the user s information need which is typically expressed through a short typically 2-3 words and often ambiguous query. The problem of matching the user s query to the documents is rendered difficult by natural language phenomena like morphological variations polysemy and synonymy. Relevance Feedback RF tries to overcome these problems by eliciting user feedback on the relevance of documents obtained from the initial ranking and

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.