TAILIEUCHUNG - Calculus and its applications: 1.1

"Calculus and its applications: " - Limits A Numerical and Graphical Approach have objective: Find limits of functions, if they exist, using numerical or graphical methods. | Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. DEFINITION: As x approaches a, the limit of f (x) is L, written if all values of f (x) are close to L for values of x that are sufficiently close, but not equal to, a. Limits: A Numerical and Graphical Approach Slide 2012 Pearson Education, Inc. All rights reserved THEOREM: As x approaches a, the limit of f (x) is L, if the limit from the left exists and the limit from the right exists and both limits are L. That is, if 1) and 2) then Limits: A Numerical and Graphical Approach Slide 2012 Pearson Education, Inc. All rights reserved Limits: A Numerical and Graphical Approach Quick Check 1 Let What is ? What is the limit of as approaches ? Slide 2012 Pearson Education, Inc. All rights reserved Limits: A Numerical and Graphical Approach Quick Check 1 Solution a) 1.) Since , we will substitute in for , giving us the new equation 2.) Solving for , we get Thus does not exist. Slide 2012 Pearson Education, Inc. All rights reserved Limits: A Numerical and Graphical Approach Quick Check 1 Solution b) First let approach from the left: Thus it appears that is . Next let approach from the right: Thus it appears that is . Since both the left-hand and right-hand limits agree, . Slide 2012 Pearson Education, Inc. All rights reserved Example 1: Consider the function H given by Graph the function, and find each of the following limits, if they exist. When necessary, state that the limit does not exist. a) Limits: A Numerical and Graphical Approach b) Slide 2012 Pearson Education, Inc. All rights reserved a) Limit Numerically First, let x approach 1 from the left: Thus, it appears that 0 H(x) Limits: A Numerical and Graphical Approach 2 3 Slide 2012 Pearson Education, Inc. All rights reserved a) Limit Numerically .

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.