TAILIEUCHUNG - Đề tài " Removability of point singularities of Willmore surfaces "

We investigate point singularities of Willmore surfaces, which for example appear as blowups of the Willmore flow near singularities, and prove that closed Willmore surfaces with one unit density point singularity are smooth in codimension one. As applications we get in codimension one that the Willmore flow of spheres with energy less than 8π exists for all time and converges to a round sphere and further that the set of Willmore tori with energy less than 8π − δ is compact up to M¨bius transformations. o 1. Introduction For an immersed closed surface f : . | Annals of Mathematics Removability of point singularities of Willmore surfaces By Ernst Kuwert and Reiner Sch atzle Annals of Mathematics 160 2004 315 357 Removability of point singularities of Willmore surfaces By Ernst Kuwert and Reiner Schatzle Abstract We investigate point singularities of Willmore surfaces which for example appear as blowups of the Willmore flow near singularities and prove that closed Willmore surfaces with one unit density point singularity are smooth in codimension one. As applications we get in codimension one that the Willmore flow of spheres with energy less than 8 exists for all time and converges to a round sphere and further that the set of Willmore tori with energy less than 8 Ỗ is compact up to Mobius transformations. 1. Introduction For an immersed closed surface f s Rra the Willmore functional is defined by W f 4 H 2 . where H denotes the mean curvature vector of f g f geuc the pull-back metric and IX the induced area measure on s. The Gauss equations and the Gauss-Bonnet Theorem give rise to equivalent expressions W f 4 i A 2 d g X s 1 i A 2 d g 2 X s 4 J 2 J s s where A denotes the second fundamental form A A 1 g H its trace-free part and X the Euler characteristic. The Willmore functional is scale invariant and moreover invariant under the full Mobius group of Rra. Critical points of W are called Willmore surfaces or more precisely Willmore immersions. We always have W f 4 with equality only for round spheres see Wil in codimension one that is n 3. On the other hand if W f 8 E. Kuwert was supported by DFG Forschergruppe 469. R. Schatzle was supported by DFG Sonderforschungsbereich 611 and by the European Community s Human Potential Programme under contract HPRN-CT-2002-00274 fRoNTS-SINGULARITIES. 316 ERNST KUWERT AND REINER SCHATZLE then f is an embedding by an inequality of Li and Yau in LY for the reader s convenience see also in our appendix. Bryant classified in Bry all Willmore spheres in codimension one. In KuSch 2 .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.