TAILIEUCHUNG - Đề tài " (log t)2/3 law of the two dimensional asymmetric simple exclusion process "

We prove that the diffusion coefficient for the two dimensional asymmetric simple exclusion process with nearest-neighbor-jumps diverges as (log t)2/3 to the leading order. The method applies to nearest and non-nearest neighbor asymmetric simple exclusion processes. 1. Introduction The asymmetric simple exclusion process is a Markov process on {0, 1}Z with asymmetric jump rates. There is at most one particle allowed per site and thus the word exclusion. The particle at a site x waits for an exponential time and then jumps to y with rate p(x − y) provided that the site is not occupied. . | Annals of Mathematics log t 2 3 law of the two dimensional asymmetric simple exclusion process By Horng-Tzer Yau Annals of Mathematics 159 2004 377 405 log t 2 3 law of the two dimensional asymmetric simple exclusion process By Horng-Tzer Yau Abstract We prove that the diffusion coefficient for the two dimensional asymmetric simple exclusion process with nearest-neighbor-jumps diverges as logt 2 3 to the leading order. The method applies to nearest and non-nearest neighbor asymmetric simple exclusion processes. 1. Introduction The asymmetric simple exclusion process is a Markov process on 0 1 Zd with asymmetric jump rates. There is at most one particle allowed per site and thus the word exclusion. The particle at a site x waits for an exponential time and then jumps to y with rate p x y provided that the site is not occupied. Otherwise the jump is suppressed and the process starts again. The jump rate is assumed to be asymmetric so that in general there is net drift of the system. The simplicity of the model has made it the default stochastic model for transport phenomena. Furthermore it is also a basic component for models 5 12 with incompressible Navier-Stokes equations as the hydrodynamical equation. The hydrodynamical limit of the asymmetric simple exclusion process was proved by Rezakhanlou 13 to be a viscousless Burgers equation in the Euler scaling limit. If the system is in equilibrium the Burgers equation is trivial and the system moves with a uniform velocity. This uniform velocity can be removed and the viscosity of the system or the diffusion coefficient can be defined via the standard mean square displacement. Although the diffusion coefficient is expected to be finite for dimension d 2 a rigorous proof was obtained only a few years ago 9 by estimating the corresponding resolvent equation. Based on the mode coupling theory Beijeren Kutner and Spohn 3 Work partially supported by NSF grant DMS-0072098 DMS-0307295 and MacArthur fellowship. 378 HORNG-TZER

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.