TAILIEUCHUNG - Đề tài " A C2-smooth counterexample to the Hamiltonian Seifert conjecture in R4 "

We construct a proper C 2 -smooth function on R4 such that its Hamiltonian flow has no periodic orbits on at least one regular level set. This result can be viewed as a C 2 -smooth counterexample to the Hamiltonian Seifert conjecture in dimension four. 1. Introduction The “Hamiltonian Seifert conjecture” is the question whether or not there exists a proper function on R2n whose Hamiltonian flow has no periodic orbits on at least one regular level set. | Annals of Mathematics A C2-smooth counterexample to the Hamiltonian Seifert conjecture in R4 By Viktor L. Ginzburg and Basnak Z. G urel Annals of Mathematics 158 2003 953 976 A C2-smooth counterexample to the Hamiltonian Seifert conjecture in R4 By Viktor L. Ginzburg and Basak Z. Gurel Abstract We construct a proper C2-smooth function on R4 such that its Hamiltonian flow has no periodic orbits on at least one regular level set. This result can be viewed as a C2-smooth counterexample to the Hamiltonian Seifert conjecture in dimension four. 1. Introduction The Hamiltonian Seifert conjecture is the question whether or not there exists a proper function on R2ra whose Hamiltonian flow has no periodic orbits on at least one regular level set. We construct a C2-smooth function on R4 with such a level set. Following the tradition of Gi4 He1 He2 Ke KuG KuGK KuK1 KuK2 Sc we can call this result a C2-smooth counterexample to the Hamiltonian Seifert conjecture in dimension four. We emphasize that in this example the Hamiltonian vector field is C 1-smooth while the function is C2 . In dimensions greater than six C -smooth counterexamples to the Hamiltonian Seifert conjecture were constructed by one of the authors Gi1 and simultaneously by M. Herman He1 He2 . In dimension six a C21 -smooth counterexample was found by M. Herman He1 He2 . This smoothness constraint was later relaxed to C x in Gi2 . A very simple and elegant construction of a new C x-smooth counterexample in dimensions greater than four was recently discovered by E. Kerman Ke . The flow in Kerman s example has dynamics different from the ones in Gi1 Gi2 He1 He2 . We refer the reader to Gi3 Gi4 for a detailed discussion of the Hamiltonian Seifert conjecture. The reader interested in the results concerning the original Seifert conjecture settled by K. Kuperberg KuGK KuK1 should consult KuK2 KuK3 . Here we only mention that a C 1-smooth counterexample to the Seifert conjecture on S3 was constructed by P. Schweitzer Sc

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.