TAILIEUCHUNG - EXPONENTIAL STABILITY OF DYNAMIC EQUATIONS ON TIME SCALES ALLAN C. PETERSON AND YOUSSEF N. RAFFOUL

EXPONENTIAL STABILITY OF DYNAMIC EQUATIONS ON TIME SCALES ALLAN C. PETERSON AND YOUSSEF N. RAFFOUL Received 6 July 2004 and in revised form 16 December 2004 We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given. 1. Introduction This paper considers the exponential stability of the zero solution of the first-order vector dynamic equation x∆ = f (t,x), t ≥ 0. () Throughout the paper, we let x(t,t0 ,x0 ) denote a solution of the. | EXPONENTIAL STABILITY OF DYNAMIC EQUATIONS ON TIME SCALES ALLAN C. PETERSON AND YOUSSEF N. RAFFOUL Received 6 July 2004 and in revised form 16 December 2004 We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given. 1. Introduction This paper considers the exponential stability of the zero solution of the first-order vector dynamic equation xA f t x t 0. Throughout the paper we let x t t0 x0 denote a solution of the initial value problem IVP x t0 X0 t0 0 X0 G R. For the existence uniqueness and extendability of solutions of IVPs for - see 2 Chapter 8 . Also we assume that f 0 to X R R is a continuous function and t is from a so-called time scale T which is a nonempty closed subset of R . Throughout the paper we assume that 0 G T for convenience and that f t 0 0 for all t in the time scale interval 0 to t G T 0 t to and call the zero function the trivial solution of . If T R then XA X and - becomes the following IVP for ordinary differential equations x f t x t 0 x tc x0 t0 0. Recently Peterson and Tisdell 7 used Lyapunov-type functions to formulate some sufficient conditions that ensure all solutions to - are bounded. Earlier Raffoul 8 used some similar ideas to obtain boundedness of all solutions of and . Here Copyright 2005 Hindawi Publishing Corporation Advances in Difference Equations 2005 2 2005 133-144 DOI 134 Exponential stability of dynamic equations on time scales we use Lyapunov-type functions on time scales and then formulate appropriate inequalities on these functions that guarantee that the trivial solution to is exponentially or uniformly exponentially stable on 0 to . Some of our results are new even for the special cases T R and T Z. To understand the notation used above and

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.