TAILIEUCHUNG - Đề tài " Stable ergodicity of certain linear automorphisms of the torus "

We find a class of ergodic linear automorphisms of TN that are stably ergodic. This class includes all non-Anosov ergodic automorphisms when N = 4. As a corollary, we obtain the fact that all ergodic linear automorphism of TN are stably ergodic when N ≤ 5. 1. Introduction The purpose of this paper is to give sufficient conditions for a linear automorphism on the torus to be stably ergodic. By stable ergodicity we mean that any small perturbation remains ergodic. So, let a linear automorphism on the torus TN = RN /ZN be generated by a matrix A. | Annals of Mathematics Stable ergodicity of certain linear automorphisms of the torus By Federico Rodriguez Hertz Annals of Mathematics 162 2005 65 107 Stable ergodicity of certain linear automorphisms of the torus By Federico Rodríguez Hertz Abstract We find a class of ergodic linear automorphisms of TN that are stably ergodic. This class includes all non-Anosov ergodic automorphisms when N 4. As a corollary we obtain the fact that all ergodic linear automorphism of TN are stably ergodic when N 5. 1. Introduction The purpose of this paper is to give sufficient conditions for a linear automorphism on the torus to be stably ergodic. By stable ergodicity we mean that any small perturbation remains ergodic. So let a linear automorphism on the torus TN RN ZN be generated by a matrix A e SL N Z in the canonical way. We shall denote also by A the induced linear automorphism. It is known after Halmos Ha that A is ergodic if and only if no root of unity is an eigenvalue of A. However it was Anosov An who provided the first examples of stably ergodic linear automorphisms. Indeed the so-called Anosov diffeomorphisms of which hyperbolic linear automorphisms are a particular case are both ergodic and C 1-open which gives rise to their stable ergodicity. Circa 1969 Pugh and Shub began studying stable ergodicity of diffeomor-phisms. They wondered for instance whether 0 0 0 -1 10 0 8 010 -6 0 0 1 8 was stably ergodic in T4. More generally Hirsh Pugh and Shub posed in HPS the following question Question 1. Is every ergodic linear automorphism of TN stably ergodic This work has been partially supported by IMPA CNPq. 66 FEDERICO RODRÍGUEZ HERTZ This paper gives a positive answer to this question under some restrictions. Let us introduce some notation to be more precise. We shall call A pseudoAnosov if it verifies the following conditions A is ergodic its characteristic polynomial PA is irreducible over the integers and PA cannot be written as a polynomial in tn for any n 2. There is

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.