TAILIEUCHUNG - Đề tài "Cyclic homology, cdhcohomology and negative K-theory"

We prove a blow-up formula for cyclic homology which we use to show that infinitesimal K-theory satisfies cdh-descent. Combining that result with some computations of the cdh-cohomology of the sheaf of regular functions, we verify a conjecture of Weibel predicting the vanishing of algebraic K-theory of a scheme in degrees less than minus the dimension of the scheme, for schemes essentially of finite type over a field of characteristic zero. Introduction The negative algebraic K-theory of a singular variety is related to its geometry. . | Annals of Mathematics Cyclic homology cdh-cohomology and negative K-theory By G. Corti nas C. Haesemeyer M. Schlichting and C. Weibel Annals of Mathematics 167 2008 549 573 Cyclic homology cdh-cohomology and negative K-theory By G. Cortinas C. HAESEMEyER M. Schlichting and C. Weibel Abstract We prove a blow-up formula for cyclic homology which we use to show that infinitesimal K-theory satisfies cdh-descent. Combining that result with some computations of the cdh-cohomology of the sheaf of regular functions we verify a conjecture of Weibel predicting the vanishing of algebraic K-theory of a scheme in degrees less than minus the dimension of the scheme for schemes essentially of finite type over a field of characteristic zero. Introduction The negative algebraic K-theory of a singular variety is related to its geometry. This observation goes back to the classic study by Bass and Murthy 1 which implicitly calculated the negative K-theory of a curve X. By definition the group K-n X describes a subgroup of the Grothendieck group K0 Y of vector bundles on Y X X A1 0 ra. The following conjecture was made in 1980 based upon the Bass-Murthy calculations and appeared in 38 . Recall that if F is any contravariant functor on schemes a scheme X is called F-regular if F X F X X Ar is an isomorphism for all r 0. K-dimension Conjecture . Let X be a Noetherian scheme of dimension d. Then Km X 0 for m d and X is K-d-regular. In this paper we give a proof of this conjecture for X essentially of finite type over a field F of characteristic 0 see Theorem . We remark that this conjecture is still open in characteristic p 0 except for curves and surfaces Cortinas research was partially supported by the Ramon y Cajal fellowship by ANPCyT grant PICT 03-12330 and by MEC grant MTM00958. Haesemeyer s research was partially supported by the Bell Companies Fellowship and RTN Network HPRN-CT-2002-00287. Schlichting s research was partially supported by RTN Network HPRN-CT-2002-00287.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.