TAILIEUCHUNG - Đề tài "Subelliptic SpinC Dirac operators, I "

Let X be a compact K¨hler manifold with strictly pseudoconvex bounda ary, Y. In this setting, the SpinC Dirac operator is canonically identified with ¯ ¯ ∂ + ∂ ∗ : C ∞ (X; Λ0,e ) → C ∞ (X; Λ0,o ). We consider modifications of the classi¯ cal ∂-Neumann conditions that define Fredholm problems for the SpinC Dirac operator. In Part 2, [7], we use boundary layer methods to obtain subelliptic estimates for these boundary value problems. Using these results, we obtain an expression for the finite part of the holomorphic Euler characteristic of a strictly pseudoconvex manifold. | Annals of Mathematics Subelliptic SpinC Dirac operators I By Charles L. Epstein Annals of Mathematics 166 2007 183 214 Subelliptic Spine Dirac operators I By Charles L. Epstein Dedicated to my parents Jean and Herbert Epstein on the occasion of their eightieth birthdays Abstract Let X be a compact Kahler manifold with strictly pseudoconvex boundary Y. In this setting the Spine Dirac operator is canonically identified with d d C X A0 e C X A0 o . We consider modifications of the classical Ỡ-Neumann conditions that define Fredholm problems for the Spine Dirac operator. In Part 2 7 we use boundary layer methods to obtain subelliptic estimates for these boundary value problems. Using these results we obtain an expression for the finite part of the holomorphic Euler characteristic of a strictly pseudoconvex manifold as the index of a Spine Dirac operator with a subellip-tic boundary condition. We also prove an analogue of the Agranovich-Dynin formula expressing the change in the index in terms of a relative index on the boundary. If X is a complex manifold partitioned by a strictly pseudoconvex hypersurface then we obtain formulrn for the holomorphic Euler characteristic of X as sums of indices of Spine Dirac operators on the components. This is a subelliptic analogue of Bojarski s formula in the elliptic case. Introduction Let X be an even dimensional manifold with a Spine-structure see 6 12 . A compatible choice of metric g defines a Spine Dirac operator 3 which acts on sections of the bundle of complex spinors . The metric on X induces a metric on the bundle of spinors. If ơ ơ g denotes a pointwise inner product then we define an inner product of the space of sections of by setting ơ ơ x Ị ơ ơ g dVg . Research partially supported by NSF grants DMS99-70487 and DMS02-03795 and the Francis J. Carey term chair. 184 CHARLES L. EPSTEIN If X has an almost complex structure then this structure defines a Spine-structure. If the complex structure is integrable then the bundle

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.