TAILIEUCHUNG - Đề tài " Deligne’s integrality theorem in unequal characteristic and rational points over finite fields "

A Pierre Deligne, a l ’occasion de son 60-i`me anniversaire, ` e en t´moignage de profonde admiration e Abstract If V is a smooth projective variety defined over a local field K with fi¯ nite residue field, so that its ´tale cohomology over the algebraic closure K is e supported in codimension 1, then the mod p reduction of a projective regular model carries a rational point. As a consequence, if the Chow group of 0-cycles of V over a large algebraically closed field is trivial, then the mod p reduction of a projective regular model carries a rational. | Annals of Mathematics Deligne s integrality theorem in unequal characteristic and rational points over finite fields By H el ene Esnault Annals of Mathematics 164 2006 715 730 Deligne s integrality theorem in unequal characteristic and rational points over finite fields By Helene Esnault A Pierre Deligne a l occasion de son 60-ieme anniversaire en témoignage de profonde admiration Abstract If V is a smooth projective variety defined over a local field K with finite residue field so that its etale cohomology over the algebraic closure K is supported in codimension 1 then the mod p reduction of a projective regular model carries a rational point. As a consequence if the Chow group of 0-cycles of V over a large algebraically closed field is trivial then the mod p reduction of a projective regular model carries a rational point. 1. Introduction If Y is a smooth geometrically irreducible projective variety over a finite field k we singled out in 10 a motivic condition forcing the existence of a rational point. Indeed if the Chow group of 0-cycles of Y fulfills base change CH0 Y Xk k Y Z Q Q then the number of rational points of Y is congruent to 1 modulo k . In general it is hard to control the Chow group of 0-cycles but if Y is rationally connected for example if Y is a Fano variety then the base change condition is fulfilled and thus rationally connected varieties over a finite field have a rational point. Recall the Leitfaden of the proof. By S. Bloch s decomposition of the diagonal acting on cohomology as a correspondence 2 Appendix to Lecture 1 the base change condition implies that etale cohomology Hm Y Q is supported in codimension 1 for all m 1 that is that etale cohomology for m 1 lives in coniveau 1. Here t is a prime number not dividing k . On the other hand by Deligne s integrality theorem 6 Cor. the coniveau condition implies that the eigenvalues of the geometric Frobenius acting on Hm Y O are divisible by k as algebraic Partially supported by the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.