TAILIEUCHUNG - Đề tài " Higher genus GromovWitten invariants as genus zero invariants of symmetric products "

I prove a formula expressing the descendent genus g Gromov-Witten invariants of a projective variety X in terms of genus 0 invariants of its symmetric product stack S g+1 (X). When X is a point, the latter are structure constants of the symmetric group, and we obtain a new way of calculating the GromovWitten invariants of a point. 1. Introduction Let X be a smooth projective variety. The genus 0 Gromov-Witten invariants of X satisfy relations which imply that they can be completely encoded in the structure of a Frobenius manifold on the cohomology H ∗ (X, C). . | Annals of Mathematics Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products By Kevin Costello Annals of Mathematics 164 2006 561 601 Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products By Kevin Costello Abstract I prove a formula expressing the descendent genus g Gromov-Witten invariants of a projective variety X in terms of genus 0 invariants of its symmetric product stack Sg 1 X . When X is a point the latter are structure constants of the symmetric group and we obtain a new way of calculating the Gromov-Witten invariants of a point. 1. Introduction Let X be a smooth projective variety. The genus 0 Gromov-Witten invariants of X satisfy relations which imply that they can be completely encoded in the structure of a Frobenius manifold on the cohomology H X C . In this paper I prove a formula which expresses the descendent genus g Gromov-Witten invariants of a smooth projective variety X in terms of the descendent genus 0 invariants of the symmetric product stack Sg 1X. The latter are encoded in a Frobenius manifold structure on the orbifold cohomology group HOrb Sg 1 X C . This implies that the Gromov-Witten invariants of X at all genera are described by a sequence of Frobenius manifold structures on the homogeneous components of the Fock space F Sym H X C C iC i d 0H rb Sd X C . Standard properties of genus 0 invariants such as associativity when applied to the symmetric product stacks SdX yield implicit relations among higher-genus Gromov-Witten invariants of X . When X is a point the symmetric product is the classifying stack BSd of the symmetric group. The Frobenius manifold associated to the genus 0 invariants of BSd is in fact a Frobenius algebra which is the center of the group algebra of the symmetric group C SdA. Our result therefore gives a new way of expressing the integrals of tautological classes on Mg n in terms of structure constants of C Sd . 562 KEVIN COSTELLO More generally the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.