TAILIEUCHUNG - Đề tài " Finite and infinite arithmetic progressions in sumsets "

We prove that if A is a subset of at least cn1/2 elements of {1, . . . , n}, where c is a sufficiently large constant, then the collection of subset sums of A contains an arithmetic progression of length n. As an application, we confirm a long standing conjecture of Erd˝s and Folkman on complete sequences. o | Annals of Mathematics Finite and infinite arithmetic progressions in sumsets By E. Szemer redi and V. H. Vu Annals of Mathematics 163 2006 1 35 Finite and infinite arithmetic progressions in sumsets By E. Szemeredi and V. H. Vu Abstract We prove that if A is a subset of at least cn1 2 elements of 1 . n where c is a sufficiently large constant then the collection of subset sums of A contains an arithmetic progression of length n. As an application we confirm a long standing conjecture of Erdos and Folkman on complete sequences. 1. Introduction For a finite or infinite set A of positive integers Sa denotes the collection of finite subset sums of A Sa s s x B c A BI . IxeB Two closely related notions are that of lA and l A lA denotes the set of numbers which can be represented as a sum of l elements of A and l A denotes the set of numbers which can be represented as a sum of l different elements of A respectively. If l A then l A is the empty set. It is clear that Sa A J A One of the fundamental problems in additive number theory is to estimate the length of the longest arithmetic progression in Sa Ia and l A respectively. The purpose of this paper is multi-fold. We shall prove a sharp result concerning the length of the longest arithmetic progression in Sa. Via the proof we would like to introduce a new method which can be used to handle many other problems. Finally the result has an interesting application as we can use it to settle a forty-year old conjecture of Erdos and Folkman concerning complete sequences. Research supported in part by NSF grant DMS-0200357 by an NSF CAREER Grant and by an A. Sloan Fellowship. 2 E. SZEMEREDI AND V. H. VU Theorem . There is a positive constant c such that the following holds. For any positive integer n if A is a subset of n with at least cn1 2 elements then Sa contains an arithmetic progression of length n. Here and later n denotes the set of positive integers between 1 and n. The proof Theorem introduces a new and useful

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.