TAILIEUCHUNG - Báo cáo toán học: "A new upper bound on the total domination number of a graph"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A new upper bound on the total domination number of a graph. | A new upper bound on the total domination number of a graph 1 Michael A. Henning and 2Anders Yeo 1School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg 3209 South Africa 2Department of Computer Science Royal Holloway University of London Egham Surrey TW20 OEX UK Submitted Sep 7 2006 Accepted Sep 3 2007 Published Sep 7 2007 Abstract A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Let G be a connected graph of order n with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than 2 and we let L be the set of all large vertices of G. Let P be any component of G L it is a path. If PI 0 mod4 and either the two ends of P are adjacent in G to the same large vertex or the two ends of P are adjacent to different but adjacent large vertices in G we call P a 0-path. If PI 5 and PI 1 mod4 with the two ends of P adjacent in G to the same large vertex we call P a 1-path. If PI 3 mod 4 we call P a 3-path. For i 2 0 1 3g we denote the number of i-paths in G by Pi. We show that the total domination number of G is at most n p0 p1 Ps 2. This result generalizes a result shown in several manuscripts see for example J. Graph Theory 46 2004 207-210 which states that if G is a graph of order n with minimum degree at least three then the total domination of G is at most n 2. It also generalizes a result by Lam and Wei stating that if G is a graph of order n with minimum degree at least two and with no degree-2 vertex adjacent to two other degree-2 vertices then the total domination of G is at most n 2. Keywords bounds path components total domination number AMS subject classification 05C69 Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal. THE ELECTRONIC JOURNAL OF COMBINATORICS 14

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.