TAILIEUCHUNG - Báo cáo toán học: "A Determinant Identity that Implies Rogers-Ramanujan"

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A Determinant Identity that Implies Rogers-Ramanujan. | A Determinant Identity that Implies Rogers-Ramanujan Kristina C. Garrett Department of Mathematics and Computer Science Carleton College Minnesota USA kgarrett@ Submitted Oct 2 2004 Accepted Nov 23 2004 Published Jul 29 2005 MR Subject Classifications 05A30 33C45 Abstract We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity Theorem gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given. 1 Introduction The Rogers-Ramanujan identities are well known in the theory of partitions. They may be stated analytically as X qn n 0 1 n X 1n2 n s 7T - . q5 1 ------1 . . 1 2 where a q n 1 - a 1 - aq 1 - aqn 1 for n 0. a 1 0 1. and a 1 1 n 1 - a1n . n 0 1 1 a q i b 1 1. These identities were first proved by Rogers in 1894 13 Ramanujan and Rogers in 1919 14 and independently by Schur in 1917 15 . In particular Schur gave an ingenious proof that relied on the integer partition interpretation and used a clever sign-reversing THE ELECTRONIC JOURNAL OF COMBINATORICS 12 2005 R35 1 involution on pairs of partitions to establish the identities. Throughout the last century many proofs and generalizations have been given in the literature. For a survey of proofs before 1989 see 1 . In 5 we gave a generalization of the classical Rogers-Ramanujan identities writing the infinite sum as a linear combination of the infinite products in 1 and 2 . Theorem . For m 0 an integer .n2 mn -1 mq m Cm q _ -1 mq m dm q q5 i q5 i where Cm q dm q J2 -1 AqA 5A 3 2 J2 -1 AqA 5A 1 2 m-1 m 1 5A J . m-1 m 1 5A J 3 4 5 yq o q q n As usual xj denotes the greatest integer function and the q-binomial coefficients are defined as follows n m n L -J q qn 1 q m q q m 0 if m 0 is an integer otherwise 6 Í It is customary to omit the subscript in the case where it is q. In future use we will only include the subscript

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.