TAILIEUCHUNG - Báo cáo toán học: "A λ-ring Frobenius Characteristic for G Sn"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: A λ-ring Frobenius Characteristic for G Sn. | A A-ring Frobenius Characteristic for G X Sn Anthony Mendes Department of Mathematics California Polytechnic State University San Luis Obispo CA 93407. USA aamendes@ Jeffrey Remmel Department of Mathematics University of California San Diego La Jolla CA 92093-0112. USA jremmel@ Jennifer Wagner University of Minnesota School of Mathematics 127 Vincent Hall 206 Church Street SE Minneapolis MN 55455. USA wagner@ Submitted Apr 21 2003 Accepted Jul 1 2004 Published Sep 3 2004 MR Subject Classifications 05E10 20C15 Abstract A A-ring version of a Frobenius characteristic for groups of the form GI Sn is given. Our methods provide natural analogs of classic results in the representation theory of the symmetric group. Included is a method decompose the Kronecker product of two irreducible representations of G Ỉ Sn into its irreducible components along with generalizations of the Murnaghan-Nakayama rule the Hall inner product and the reproducing kernel for G Ỉ Sn. 1 Introduction Let G be a finite group and let Sn be the symmetric group on n letters. In the early 1930 s Specht described the irreducible representations of the wreath product G 1 Sn in his dissertation 16 but did not describe an analog of the Frobenius characteristic for the symmetric group. Since then there have been numerous accounts of the representation theory of G 1 Sn 6 7 . Most have not attempted to generalize the Frobenius map although at least one has 10 . In 10 Macdonald gives a generalization of Schur s theory of polynomial functors before showing that a specialization of that theory naturally leads to Specht s results on the representations of G 1 Sn. Macdonald s version of the Frobenius map for G 1 Sn is not the same as the Frobenius map in this paper but it is shown to have some of the same properties. In particular Macdonald verifies a sort of Frobenius reciprocity. These results are reproduced in 11 . Our presentation of the Frobenius map for G1 Sn can essentially be

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.