TAILIEUCHUNG - Báo cáo toán học: "A DETERMINANT OF THE CHUDNOVSKYS GENERALIZING THE ELLIPTIC FROBENIUS-STICKELBERGER-CAUCHY DETERMINANTAL IDENTITY"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: A DETERMINANT OF THE CHUDNOVSKYS GENERALIZING THE ELLIPTIC FROBENIUS-STICKELBERGER-CAUCHY DETERMINANTAL IDENTITY. | A DETERMINANT OF THE CHUDNOVSKYS GENERALIZING THE ELLIPTIC FROBENIUS-STICKELBERGER-CAUCHY DETERMINANTAL IDENTITY TeWODROS AmDEBERHAN Mathematics DeVry Institute of Technology North Brunswick NJ 08902 USA amdberha@ tewodros@ Submitted October 16 2000. Accepted October 23 2000. Abstract. . Chudnovsky and . Chudnovsky CH introduced a generalization of the Frobenius-Stickelberger determinantal identity involving elliptic functions that generalize the Cauchy determinant. The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This method of proof is inspired by D. Zeilberger s creative application in Z1 . AMS Subject Classification Primary 05A 11A 15A One of the most famous alternants is the Cauchy determinant which is only a special case of a determinant with symbolic entries 1 det 1 xi - yj 1 i j n -1 n n-1 2 rti j xi- xj yi- yj nn i nn i Xi - yj This expression lends itself to explicit formulas in Padé approximation theory and further applications in transcendental theory. On the other hand the Cauchy determinant cannot be readily generalized to trigonometric or elliptic functions. However its associate can. A natural elliptic generalization of the 1 x Cauchy kernel to the corresponding Riemann surface would be the WeierstraB -function. Such a generalization was supplied by Frobenius and Stickelberger FS with references given to Euler and Jacobi. . Chudnovsky and . Chudnovsky CH introduced a generalization of the Frobenius Stickel-berger determinantal identity involving elliptic functions that generalizes the Cauchy determinant. The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This method of proof is inspired by D. Zeilberger s creative application in Z1 . We begin by recalling some notations. Given the Weierstrafi elliptic function z then the Weierstrafi -function and -function are defined respectively by 2 d . . d z - d z and z d log ơ

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.