TAILIEUCHUNG - SAS/ETS 9.22 User's Guide 151

SAS/Ets User's Guide 151. Provides detailed reference material for using SAS/ETS software and guides you through the analysis and forecasting of features such as univariate and multivariate time series, cross-sectional time series, seasonal adjustments, multiequational nonlinear models, discrete choice models, limited dependent variable models, portfolio analysis, and generation of financial reports, with introductory and advanced examples for each procedure. You can also find complete information about two easy-to-use point-and-click applications: the Time Series Forecasting System, for automatic and interactive time series modeling and forecasting, and the Investment Analysis System, for time-value of money analysis of a variety of investments | 1492 F Chapter 22 The SEVERITY Procedure Experimental Overview SEVERITY Procedure The SEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that is used to model magnitude severity of a continuous-valued event of interest. Some examples of such events are loss amounts paid by an insurance company and demand of a product as depicted by its sales. PROC SEVERITY is especially useful when the severity of an event does not follow typical distributions such as the normal distribution that are often assumed by standard statistical methods. PROC SEVERITY provides a default set of probability distribution models that includes the Burr exponential gamma generalized Pareto inverse Gaussian Wald lognormal Pareto and Weibull distributions. In the simplest form you can estimate the parameters of any of these distributions by using a list of severity values that are recorded in a SAS data set. The values can optionally be grouped by a set of BY variables. PROC SEVERITY computes the estimates of the model parameters their standard errors and their covariance structure by using the maximum likelihood method for each of the BY groups. PROC SEVERITY can fit multiple distributions at the same time and choose the best distribution according to a specified selection criterion. Seven different statistics of fit can be used as selection criteria. They are log likelihood Akaike s information criterion AIC corrected Akaike s information criterion AICC Schwarz Bayesian information criterion BIC Kolmogorov-Smirnov statistic KS Anderson-Darling statistic AD and Cramer-von-Mises statistic CvM . You can request the procedure to output the status of the estimation process the parameter estimates and their standard errors the estimated covariance structure of the parameters the statistics of fit estimated cumulative distribution function CDF for each of the specified distributions and the empirical distribution function EDF estimate which is used to compute .

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.