TAILIEUCHUNG - Các bài toán về Idean và vành thương

Tham khảo tài liệu 'các bài toán về idean và vành thương', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐẠI SỐ CƠ SỞ Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa TS. Trần Huyên Ngày 8 tháng 4 năm 2005 Bài 10. Các Bài Toán Về Iđêan Và Vành Thương Indêan trong vành có vai trò tương tự như ước chuẩn ở trong nhóm giúp hình thành nên cấu trúc vành thương. Cho vành X bộ phận I 0 trong X được gọi là một idêan nếu I 2 X đồng thời thỏa mãn điều kiện Vx G X Va G I thì ax xa G I . Điều kiện sau cùng có thể được gọi là điều kiện hút hai phía tức phần tử x G X dù dính bên trái xa hay dính bên phải ax với các phần tử a G I thì bị hút vào trong I Khi I là idean của X Kí hiệu I 1 X thì tập thương X I x 1 x G X được trang bị các phép toán xác định hợp lí sau Phép cộng xi I x2 I xi X2 I. Phép nhân x1 I x2 I x1x2 I sẽ trở thành một vành gọi là vành thương của vành X theo idean I và kí hiệu là X I . hay đơn giản hơn X I. Nếu X là vành giao hoán thì X I giao hoán Nếu X là vành có đơn vị 1 thì X I có đơn vị là 1 I. Tuy nhiên nếu X không có ước của 0 thì X I nói chung không được thừa kế vô điều kiện tính chất nói trên của X độc giả hãy thử suy nghĩ xem lí do vì sao Các bài toán về inđêan và vành thương thường gặp trước hết là các bài toán kiểm tra một bộ phận nào đó của một vành cho trước là iđêan và mô tả cấu trúc của vành thương theo iđêan đó. Để kiểm tra một iđêan ta dùng tiêu chuẩn iđêan được phát biểu như sau Cho vành X tập I 0 trong X là iđêan của X khi và chỉ khi Va b E I a b E I Vx G X Va G I ax xa G I 1 1. Ví dụ 1 Cho các tập số phức sau Z ự 5 a bự 5 a b G Z I 5a bự 5 a b G Z a Chứng minh rằng Z ự 5 là vành với hai phép cộng và nhân thông thường các số phức và I 1 Z ự 5 . b Chứng minh rằng vành thương Z ự 5 I là trường. Giải a Chúng tôi dành cho độc giả dùng tiêu chuẩn vành con để kiểm tra Z ự 5 CỸ C . và do đó Z ự 5 là một vành. Để kiểm tra I 1 Z ự 5 ta có V5a1 b 5 5a2 b2ự 5 G I 5ai biự 5 5 2 b2ự 5 5 ai a2 bi b2 ự 5 G I Va bự 5 G Z ự 5 V5c dự 5 G I _ a bự 5 5c dự 5 5 ac bd 5bc ad ự 5 G I và 5c dự 5 a bự 5 a bự 5 5c dự 5 G I Vậy I là iđêan của Z ự 5 . b Ta có vành .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.