TAILIEUCHUNG - Digital Signal Processing Handbook Part 2

A function containing variables and their derivatives is called a differential expression, and an equation involving differential expressions is called a differential equation. A differential equation is an ordinary differential equation if it contains only one independent variable; it is a partial differential equation if it contains more than one independent variable. We shall deal here only with ordinary differential equations. In the mathematical texts, the independent variable is generally x, which can be anything such as time, distance, velocity, pressure, and so on. In most of the applications in control systems, the independent variable is time | Ordinary Linear Differential and Difference Equations . Lathi California State University Sacramento Differential Equations Classical Solution Method of Convolution Difference Equations Initial Conditions and Iterative Solution Classical Solution Method of Convolution References Differential Equations A function containing variables and their derivatives is called a differential expression and an equation involving differential expressions is called a differential equation. A differential equation is an ordinary differential equation if it contains only one independent variable it is a partial differential equation if it contains more than one independent variable. We shall deal here only with ordinary differential equations. In the mathematical texts the independent variable is generally x which can be anything such as time distance velocity pressure and so on. In most of the applications in control systems the independent variable is time. For this reason we shall use here independent variable t for time although it can stand for any other variable as well. The following equation yy 3 y sin t dt2 dt is an ordinary differential equation of second order because the highest derivative is of the second order. An nth-order differential equation is linear if it is of the form dny dn-1y dy an t dtn an-1 t dtn-1 a1 t dt ao t y t r t where the coefficients ai t are not functions of y t . If these coefficients a are constants the equation is linear with constant coefficients. Many engineering as well as nonengineering systems can be modeled by these equations. Systems modeled by these equations are known as linear timeinvariant LTI systems. In this chapter we shall deal exclusively with linear differential equations with constant coefficients. Certain other forms of differential equations are dealt with elsewhere in this volume. 1999 by CRC Press LLC Role of Auxiliary Conditions in Solution of Differential Equations We now show that a differential

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.