TAILIEUCHUNG - Bất đẳng thức lượng giác - Chương 1

những chuyên đề về các dạng bất đẳng thức trong tam giác. một số dạng bất đẳng thức hay gặp và những dạng bất đẳng thức hay | Trường THPT chuyên Lý Tự Trọng - Cần Thơ Bất đẳng thức lượng giác Chương 1 Các bước đầu cơ sở Chương 1 CÁC BƯỚC ĐẦU CƠ SỞ Để bắt đầu một cuộc hành trình ta không thể không chuẩn bị hành trang để lên đường. Toán học cũng vậy. Muốn khám phá được cái hay và cái đẹp của bất đẳng thức lượng giác ta cần có những vật dụng chắc chắn và hữu dụng đó chính là chương 1 Các bước đầu cơ sở . Chương này tổng quát những kiến thức cơ bản cần có để chứng minh bất đẳng thức lượng giác. Theo kinh nghiệm cá nhân của mình tác giả cho rằng những kiến thức này là đầy đủ cho một cuộc hành trình . Trước hết là các bất đẳng thức đại số cơ bản AM - GM BCS Jensen Chebyshev . Tiếp theo là các đẳng thức bất đẳng thức liên quan cơ bản trong tam giác. Cuối cùng là một số định lý khác là công cụ đắc lực trong việc chứng minh bất đẳng thức định lý Largare định lý về dấu của tam thức bậc hai định lý về hàm tuyến tính . Mục lục . Các bất đẳng thức đại số cơ . Bất đẳng thức AM - GM. 4 . Bất đẳng thức . Bất đẳng thức . Bất đẳng thức . Các đẳng thức bất đẳng thức trong tam . Đẳng . Bất đẳng thức. 21 . Một số định lý . Định lý . Định lý về dấu của tam thức bậc . Định lý về hàm tuyến . Bài The Inequalities Trigonometry 3 Bất đẳng thức lượng giác Chương 1 Các bước đầu cơ sở Trường THPT chuyên Lý Tự Trọng - Cần Thơ . Các bất đẳng thức đại số cơ bản . Bất đẳng thức AM - GM Với mọi số thực không âm a1 a2 . an ta luôn có ữỵ a 2 . a I--------- ---------------- a1 2. n n Bất đẳng thức AM - GM Arithmetic Means - Geometric Means là một bất đẳng thức quen thuộc và có ứng dụng rất rộng rãi. Đây là bất đẳng thức mà bạn đọc cần ghi nhớ rõ ràng nhất nó sẽ là công cụ hoàn hảo cho việc chứng minh các bất đẳng thức. Sau đây là hai cách chứng minh bất đẳng thức này mà theo ý kiến chủ quan của mình tác giả cho rằng là ngắn gọn và hay nhất. Chứng minh Cách 1 Quy nạp kiểu

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.