TAILIEUCHUNG - Polygenic risk prediction models for colorectal cancer: A systematic review

Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individualized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accuracy when adding SNPs to a prediction model with only traditional risk factors. | Sassano et al. BMC Cancer 2022 22 65 https s12885-021-09143-2 RESEARCH Open Access Polygenic risk prediction models for colorectal cancer a systematic review Michele Sassano1 Marco Mariani1 Gianluigi Quaranta1 2 Roberta Pastorino2 and Stefania Boccia1 2 Abstract Background Risk prediction models incorporating single nucleotide polymorphisms SNPs could lead to individual- ized prevention of colorectal cancer CRC . However the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence our primary aim was to summarize literature on risk prediction models including genetic variants for CRC while our secondary aim was to evaluate the improvement of discriminatory accu- racy when adding SNPs to a prediction model with only traditional risk factors. Methods We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk pre- diction. We tested whether a significant trend in the increase of Area Under Curve AUC according to the number of SNPs could be observed and estimated the correlation between AUC improvement and number of SNPs. We estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using random effects meta-analysis and conducted meta-regression to investigate the association of specific factors with AUC improvement. Results We included 33 studies using genetic risk scores to combine genetic data. We found no significant trend in AUC improvement according to the number of SNPs p for trend and no correlation between the number of SNPs and AUC improvement p . Pooled AUC improvement was 95 CI and the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement obtained when adding SNPs to a prediction model. In addition models constructed in Asian individuals achieved better AUC improvement with the incorporation of SNPs compared with those developed

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.