TAILIEUCHUNG - Một số giải pháp tối ưu tập luật mờ TSK trích xuất từ máy học véc-tơ hỗ trợ hồi quy

Bài báo này tác giả nghiên cứu đế xuất và thực nghiệm một số giải pháp nhằm rút gọn, tối ưu tập luật mờ TSK trích xuất được nhưng vẫn đảm bảo hiệu quả dự đoán, dự báo của mô mình. | 230 KỶ YẾU HỘI THẢO KHOA HỌC QUỐC GIA 2018 CNTT VÀ ỨNG DỤNG TRONG CÁC LĨNH VỰC Một số giải pháp tối ưu tập luật mờ TSK trích xuất từ máy học véc-tơ hỗ trợ hồi quy Nguyễn Đức Hiển Trường cao đẳng Công nghệ thông tin Đại học Đà Nẵng ndhien@ Tóm tắt. Trích xuất tập luật mờ TSK từ máy học véc-tơ hỗ trợ là một trong những hướng tiếp cận để xây đựng mô hình mờ cho các bài toán dự đoán dự báo. Những nghiên cứu trước đây theo hướng tiếp cận này cho thấy mô hình mờ được huấn luyện tự động dựa trên tập dữ liệu đầu vào dẫn đến những hạn chế chủ yếu như kích thước tập luật lớn thiếu đặc trưng thiếu tính bao phủ. Trong bài báo này nhóm tác giả nghiên cứu đế xuất và thực nghiệm một số giải pháp nhằm rút gọn tối ưu tập luật mờ TSK trích xuất được nhưng vẫn đảm bảo hiệu quả dự đoán dự báo của mô mình. Từ khóa Mô hình mờ TSK Máy học Véc-tơ hỗ trợ Mô hình mờ hướng dữ liệu Mô hình dự báo hồi quy. 1 Đặt vấn đề Mô hình mờ được biết đến như là một mô hình khá hiệu quả trong việc xử lý những thông tin mơ hồ và không chắc chắn đồng thời nó cũng thể hiện những lợi thế rõ ràng trong việc biểu diễn và xử lý tri thức. Hoạt động của mô hình mờ phụ thuộc vào hệ thống các luật mờ và quá trình suy diễn trên tập luật mờ đó. Đã có nhiều tác giả nghiên cứu và đề xuất các phương thức để xây dựng các mô hình mờ hướng dữ liệu 3 4 5 6 7 8 9 10 . Vấn đề trích xuất mô hình mờ từ máy học véc-tơ hỗ trợ SVM Support Vector Machine được nhóm tác giả Chiang và Hao nghiên cứu và công bố lần đầu tiên vào năm 2004 3 . Một trong những vấn đề của máy học véc-tơ hỗ trợ là tính chính xác của mô hình thu được tỷ lệ thuận với số lượng support-vector Sv sinh ra điều này đồng nghĩa với việc nếu tăng tính chính xác của mô hình thì số lượng luật mờ của mô hình mờ trích xuất được cũng sẽ tăng lên. Nói cách khác là khi tăng hiệu suất của mô hình thì đồng nghĩa với việc làm giảm tính sáng sủa tính có thể hiểu được của mô hình. Như vậy vấn đề đặt ra là làm thế nào có thể trích xuất được hệ thống mờ đảm bảo

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.