TAILIEUCHUNG - Bài giảng CAD/CAM - Chương 3: Mô hình hóa các thực thể hình học

Bài giảng CAD/CAM - Chương 3: Mô hình hóa các thực thể hình học có nội dung trình bày về các mô hình đường cong, đường cong phức tạp, mô hình mặt lưới, mô hình đường cong dưới dạng phương trình đa thức ẩn, . Mời các bạn cùng tham khảo chi tiết nội dung bài giảng. | C3 CAD-CAM gt MHHCACTTHH 1 GVC NGUYỄN THẾ TRANH Chương 3. MÔ HÌNH HOÁ CÁC THỰC THỂ HÌNH HỌC . MÔ HÌNH ĐƯỜNG CONG Về mặt lý thuyết có thể sử dụng phương trình toán học bất kỳ để định nghĩa đường cong. Tuy nhiên mô hình toán học dưới dạng phương trình đa thức được sử dụng phổ biến nhất do có đặc tính dễ dàng xử lý đủ linh hoạt để mô tả phần lớn các loại đường cong sử dụng trong kỹ thuật. . PHÂN LOẠI ĐƯỜNG CONG ĐA THỨC. Mô hình toán học biểu diễn đường cong có thể dưới dạng phương trình ẩn phương trình tường minh hoặc phương trình tham số. Phương trình ẩn và phương trình tường minh chỉ được sử dụng cho đường cong 2D. Đường cong đa thức tương ứng với các dạng phương trình toán học được trình bày dưới dạng tổng quát sau Phương trình đa thức ẩn. m n g x y cij x i y j 0 i 0 j 0 Phương trình đa thức tường minh. y f x a bx cx 2 . theo toạ độ Đề các r h θ α βθ γθ 2 . theo toạ độ cực Phương trình đa thức tham số. r t x t y t z t a bt ct 2 . Các dạng đường cong đa thức tham số được sử dụng phổ biến nhất bao gồm 1 Đường cong đa thức chuẩn tắc 2 Đường cong Ferguson 3 Đường cong Bezier 4 Đường cong B-spline đều 5 Đường cong B-spline không đều. . ĐƯỜNG CONG 2D. Đường cong 2D được sử dụng như các đối tượng hình học cơ sở trên các bản vẽ kỹ thuật truyền thống để mô tả hình thể 3D. 1. Mô hình đường cong dưới dạng phương trình đa thức ẩn. Phương trình ẩn g x y 0 biểu diễn đường cong trên mặt phẳng x-y ví dụ như đường tròn và đường thẳng được biểu diễn bởi phương trình C3 CAD-CAM gt MHHCACTTHH 2 GVC NGUYỄN THẾ TRANH x a 2 y b 2 r 2 0 ax by c 0 Mô hình này có ưu điểm - Dễ dàng xác định vectơ tiếp tuyến và pháp tuyến - Dễ dàng xác định vị trí tương đối giữa điểm với đường cong. Phương trình đa thức bậc 2 g x y 0 biểu diễn họ đường cong conic là giao tuyến giữa mặt cắt phẳng và mặt nón trụ. Tuỳ theo vị trí tương đối giữa mặt phẳng cắt và mặt nón đường cong conic có thể là x2 y2 1 Elip 2 2 1 0 a b 2 Parabôn y 4ax 0 2 x2 y2 3 Hyperbôn 2 2 1 0 a b Nhược điểm chính của mô hình .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.