TAILIEUCHUNG - Hypergraph and protein function prediction with gene expression data

The natural way overcoming the information loss of the above assumption is to represent the gene expression data as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semisupervised learning methods applied to hypergraph constructed from the gene expression data in order to predict the functions of yeast proteins are introduced. | Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015 Hypergraph and Protein Function Prediction with Gene Expression Data Loc Hoang Tran University of Minnesota/Computer Science Department, Minneapolis, USA Email: tran0398@ Linh Hoang Tran Portland State University/ECE Department, Portland, USA Email: linht@ Abstract—Most network-based protein (or gene) function prediction methods are based on the assumption that the labels of two adjacent proteins in the network are likely to be the same. However, assuming the pairwise relationship between proteins or genes is not complete. The information a group of genes that show very similar patterns of expression and tend to have similar functions (. the functional modules) is missed. The natural way overcoming the information loss of the above assumption is to represent the gene expression data as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semisupervised learning methods applied to hypergraph constructed from the gene expression data in order to predict the functions of yeast proteins are introduced. Experiment results show that the average accuracy performance measures of these three hypergraph Laplacian based semi-supervised learning methods are the same. However, their average accuracy performance measures of these three methods are much greater than the average accuracy performance measures of un-normalized graph Laplacian based semi-supervised learning method (. the baseline method of this paper) applied to gene co-expression network created from the gene expression data. Index Terms—hypergraph Laplacian, protein, function, prediction, semi-supervised learning I. INTRODUCTION Protein function prediction plays a very important role in modern biology. Detecting the function of proteins by biological experiments is very time-consuming and difficult. Hence a lot of computational methods have .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.