TAILIEUCHUNG - Group approach to solving the tasks of recognition

In this work, we develop CASVM and CANN algorithms for semi-supervised classification problem. The algorithms are based on a combination of ensemble clustering and kernel methods. Probabilistic model of classification with use of cluster ensemble is proposed. Within the model, error probability of CANN is studied. Assumptions that make probability of error converge to zero are formulated. The proposed algorithms are experimentally tested on a hyperspectral image. It is shown that CASVM and CANN are more noise resistant than standard SVM and kNN. | Yugoslav Journal of Operations Research xx (2018), Number nn, zzz–zzz DOI: GROUP APPROACH TO SOLVING THE TASKS OF RECOGNITION AMIRGALIYEV YEDILKHAN Institute of Information and Computational Technologies, SC MES RK, Almaty. amir ed@ BERIKOV VLADIMIR Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Novosibirsk State University berikov@ CHERIKBAYEVA . Alfarabi Kazakh National University, Almaty nenad@ LATUTA KONSTANTIN Suleyman Demirel University, Almaty BEKTURGAN KALYBEKUULY Institute of Automation and Information Technology of Academy of Science Kyrguz Republic yky198@ Received: July 2018 / Accepted: November 2018 Abstract: In this work, we develop CASVM and CANN algorithms for semi-supervised classification problem. The algorithms are based on a combination of ensemble clustering and kernel methods. Probabilistic model of classification with use of cluster ensemble is proposed. Within the model, error probability of CANN is studied. Assumptions that make probability of error converge to zero are formulated. The proposed algorithms are experimentally tested on a hyperspectral image. It is shown that CASVM and CANN are more noise resistant than standard SVM and kNN. Keywords: Recognition, Classification, Hyper Spectral Image, Semi-Supervised Learning. 2 Amirgaliyev, Y., et al. / Group Approach to Solving the Tasks of Recognition MSC: 90B85, 90C26. 1. INTRODUCTION In recent decades, there has been a growing interest in machine learning and data mining. In contrast to classical methods of data analysis, in this area much attention is paid to modeling human behavior, solving complex intellectual problems of generalization, revealing patterns, finding associations, etc. The development of this area was boosted by the ideas arising from the theory of artificial intelligence. The goal of pattern recognition is to classify objects into several classes.

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.