TAILIEUCHUNG - Chuyên đề luyện thi đại học Toán lớp 10, 11, 12

Nhằm giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập được tốt hơn mời các bạn tham khảo Chuyên đề luyện thi đại học Toán lớp 10, 11, 12 của Phạm Đào Thanh Tú. | CHUYÊN TOÁN 10-11-12-LTĐH Phạm Đào Thanh Tú (Xem chi tiết mặt trong) TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác Hệ thức cơ bản • sin2 x + cos2 x = 1 sin x • tan x = cos x 1 •1 + tan2 x = cos2 x cos x • cot x = sin x Công thức cộng • sin(a ± b) = sin a cos b ± sin b cos a • cos(a ± b) = cos a cos b 1 sin2 x • tan x. cot x = 1 •1 + cot2 x = • tan(a ± b) = sin a sin b Công thức nhân đôi • sin 2x = 2 sin x cos x • tan 2x = • cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x 2 tan x 1 − tan2 x Công thức nhân ba • sin 3x = 3 sin x − 4 sin3 x • cos 3x = 4 cos3 x − 3 cos x tan a ± tan b 1 tan a tan b Công thức hạ bậc • cos2 x = 1 + cos 2x 2 • sin2 x = 1 1 − cos 2x 2 Công thức tính theo t = tan x 2 • sin x = 2t 1 + t2 • cos x = 1 − t2 1 + t2 a+b a−b cos 2 2 a+b a−b • cos a + cos b = 2 cos cos 2 2 a+b a−b sin 2 2 a+b a−b • cos a − cos b = −2 sin sin 2 2 • sin a − sin b = 2 cos Công thức tích thành tổng 1 [cos(a − b) + cos(a + b)] 2 1 • sin a cos b = [sin(a − b) + sin(a + b)] 2 • sin a sin b = • cos a cos b = 1 [cos(a − b) − cos(a + b)] 2 Một số công thức khác • sin x + cos x = √ 2 cos x − π 4 • sin6 x + cos6 x = 1 − √ π 4 sin2 2x 4 4 • sin x + cos x = 1 − 2 • sin x − cos x = •(sin x ± cos x)2 = 1 ± sin 2x 2 2t 1 − t2 Công thức tổng thành tích • sin a + sin b = 2 sin • tan x = 3 sin2 2x 4 2 sin x − Các lý thuyết về đạo hàm Định nghĩa và các tính chất 1. Định nghĩa. Cho hàm số y = f (x) xác định trên khoảng (a, b), x0 ∈ (a, b), x0 + ∆x ∈ (a, b), nếu tồn tại giới hạn (hữu hạn) lim ∆x→0 f (x0 + ∆x) − f (x0 ) ∆x được gọi là đạo hàm của f (x) tại x0 , kí hiệu là f (x0 ) hay y (x0 ), khi đó f (x0 ) = lim ∆x→0 f (x0 + ∆x) − f (x0 ) f (x) − f (x0 ) = lim x→x0 ∆x x − x0 2. Các qui tắc tính đạo hàm. (a) [f (x) ± g(x)] = f (x) ± g (x). 2 (b) [f (x).g(x)] = f (x)g(x) + f (x)g (x). (c) [kf (x] = kf (x) với k ∈ R. (d) f (x) g(x) = f (x)g(x) − f (x)g .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.