TAILIEUCHUNG - Bi - character model for on-line cursive handwriting recognition

This paper deals with on-line cursive handwriting recognition. Analytic approach has got more attraction during the last ten years. It relies on a preliminary segmentation stage, which remains one of the challenges and might have a strong effect to the correct recognition rate. The segmentation aims to cut the ink strokes into a set of small pieces, called graphemes. | Journal of Science and Technology Volume 48, Issue 4, 2010 pp. 1-12 BI-CHARACTER MODEL FOR ON-LINE CURSIVE HANDWRITING RECOGNITION DE CAO TRAN ABSTRACT This paper deals with on-line cursive handwriting recognition. Analytic approach has got more attraction during the last ten years. It relies on a preliminary segmentation stage, which remains one of the challenges and might have a strong effect to the correct recognition rate. The segmentation aims to cut the ink strokes into a set of small pieces, called graphemes. The recognition process tries to combine them to build different segments of cursive pattern, which correspond to individual characters in the strokes. This is not a trivial process because there is no effective algorithm to decide which grapheme belongs to which character. Traditionally, the recognition process makes different assumptions about word segments which corresponding to the characters presenting in the cursive handwriting pattern. Then, the recognition process chooses the best possibility based on the probabilities of the recognition results. However, there is very little information to validate or re-evaluate that “the best possibility” is appropriate in the real world. In order to overcome this problem, this paper introduces a bi-character model, where each character is recognized jointly with its neighbor. It offers a possibility to validate a segment of word (with its neighbor) to see if it is a correct segmentation (respecting to a character). The experimental investigation on a standard dataset illustrates that the proposed model has a significant contribution to improve the recognition rate. In fact, the recognition rate is move from 65% to 83% by using the bi-character model. Keywords. On-line cursive handwriting, Hidden Markov Model, Handwriting recognition model, Bi-character model. 1. INTRODUCTION In the last 20 years, there has been an explosion of the number of mobile devices. The technology has allowed the development of .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.