TAILIEUCHUNG - Polynomial solution of descriptor system

The aim of article is to prove that it is possible to find state function x(t) and controllability function u(t) of the descriptor systems EX'(t) = Bx(t) + Du(t) in which E, B, D are real matrices with size equivalent to state function and controllability vector in the type of polynomials of degree | ISSN 1859-1531 - THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO. 6(127).2018 41 POLYNOMIAL SOLUTION OF DESCRIPTOR SYSTEM Le Hai Trung University of Education - The University of Danang; lhtrung@ Abstract - The aim of article is to prove that it is possible to find state function x(t) and controllability function u (t ) of the descriptor systems Ex '(t ) = Bx(t ) + Du (t ) in which E, B, D are real matrices with size equivalent to state function and controllability vector in the type of polynomials of degree 2 p + 1. The basis of the 2. Results and Survey Research Consider the following lemma (см [7]): Lemma. The equation Cu = v, u R k , v R s , equivalent to system: is theory is a method to prove the cascade splitting to transform the original system into an equivalent system in the type x 'p (t ) = B p x p (t ) + D p z p (t ). In the final step, we obtain function Qv = 0 + u = C v + Pu , x p (t ) satisfying the condition and substituting this in the previous in which Pu − is an element in ker C. step. Hence continuing this process, we can find out the functions x(t ) and u (t ) of the initial descriptor system. Apply this lemma to equation (1) when C = D , then (1) is equivalent to the system: Key words - Descriptor systems; controllability function; state function; polynomial; differential algebraic equations 1. Rationale Consider the descriptor system, also known as the differential algebraic equation, as follows: (1) Ex(t ) = Bx(t ) + Du (t ) with E, B L( n , m ), D L( l , m ), x(t ) n , ; x(t ) is the state function and u(t ) is the controllability function. The system is called controllable in the interval [0, T ] if for any a, b in n , it exists the control function u(t ) so that its root x(t ) satisfies the following condition: x(0) = a, x(T ) = b (2) The problem of descriptor system has received the attention of many mathematicians around the world, such as Amit Ailon (see [8], [9]), S. P Zubova .

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.