TAILIEUCHUNG - Ebook Advanced calculus: Part 2

(BQ) Part 2 book "Advanced calculus" has contents: Multilinear functionals, integration, differentiable manifolds, the integral calculus on manifolds, exterior calculus, potential theory in E^n, classical mechanics. | CHAPTER 7 MULTILINEAR FUNCTIONALS This chapter is principally for reference. Although most of the proofs will be included, the reader is not expected to study them. Our goal is a collection of basic theorems about alternating multilinear functionals, or exterior forms, and the determinant function is one of our rewards. 1. BILINEAR FUNCTIONALS We have already studied various aspects of bilinear functionals. We looked at their duality implications in Section 6, Chapter 1, we considered the "canonical forms" of symmetric bilinear functionals and their equivalent quadratic forms in Section 7, Chapter 2, and, of course, the whole scalar product theory of Chapter 5 is the theory of a still more special kind of bilinear functional. In this chapter we shall restrict ourselves to bilinear and multilinear functionals over finite-dimensional spaces, and our concerns are purely algebraic. We begin with some material related to our earlier algebra. If V and Ware finite-dimensional vector spaces, then the set of all bilinear functionals on V X W is pretty clearly a vector space. We designate it V* ® W* and call it the tensor product of V* and W*. Our first theorem simply states something that was implicit in Theorem of Chapter 1. TheoreIn . The vector spaces V* ® W*, Hom(V, W*), and Hom(W, V*) are naturally isomorphic. Proof. We saw in Theorem of Chapter 1 that eachfin V* ® W* determines a linear mapping a 1--+ fa from W to V*, wherefa(t) = f(t, a), and we also noted that this correspondence from V* ® W* to Hom(W, V*) is bijective. All that the present theorem adds is that this bijective correspondence is linear and so constitutes a natural isomorphism, as does the similar one from V* ® W* to Hom(V, W*). To see this, leth be the bilinear functional corresponding to Tin Hom(V, W*). Then f(T+S) = h fs, for f(T+S)(a, (3) = (T S)(a))({3) = (T(a) S(a))({3) = (T(a))({3) (S(a))({3) = h(a, (3) fs(a, (3). We can do the same for homogeneity. The isomorphism of V* ® W* with

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.