TAILIEUCHUNG - Sufficient conditions for the compactifiability of a closed one-form foliation

In this paper, we give sufficient conditions for compactifi of the foliation in homological terms. We also show that under these conditions, the foliation can be defined by closed 1 -forms with the ranks of their groups of periods in a certain range. | Turk J Math (2017) 41: 1344 – 1353 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Sufficient conditions for the compactifiability of a closed one-form foliation Irina GELBUKH∗ Computing Research Center (CIC), National Polytechnic Institute, Mexico City, Mexico Received: • Accepted/Published Online: • Final Version: Abstract: We study the foliation defined by a closed 1 -form on a connected smooth closed orientable manifold. We call such a foliation compactifiable if all its leaves are closed in the complement of the singular set. In this paper, we give sufficient conditions for compactifiability of the foliation in homological terms. We also show that under these conditions, the foliation can be defined by closed 1 -forms with the ranks of their groups of periods in a certain range. In addition, we describe the structure of the group generated by the homology classes of all compact leaves of the foliation. Key words: Closed one-form foliation, compact leaves, form’s rank 1. Introduction Consider a closed 1-form ω on a connected smooth closed orientable n-dimensional manifold M ; denote by Sing ω the set of its singularities. On M \ Sing ω , this form defines a codimension-one foliation Fω . Such foliations have important applications in modern physics, for example, in the theory of supergravity [2, 3]. Compact foliations, that is, foliations that consist entirely of leaves closed in M , . compact, are well studied. However, the property of compactness of a foliation is too restrictive: say, manifolds that admit a compact foliation defined by a Morse form (locally the differential of a Morse function) are sphere S n and bundle over S 1 (Proposition ). In addition, compactness is easily destroyed by a local perturbation of the form, for example, by adding a local center – the trivial center-saddle pairing [4]. Instead, we study a weaker but more

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.