TAILIEUCHUNG - Choosing the relaxation parameter in sequential block-iterative methods for linear systems

In this paper we introduce two strategies for picking relaxation parameters to control the semiconvergence behavior of a sequential block-iterative method. A convergence analysis is presented. We also demonstrate the performance of our strategies by examples taken from tomographic imaging. | Turk J Math (2017) 41: 733 – 748 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Choosing the relaxation parameter in sequential block-iterative methods for linear systems Touraj NIKAZAD∗, Shaghayegh HEIDARZADE School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran Received: • Accepted/Published Online: • Final Version: Abstract: In this paper we introduce two strategies for picking relaxation parameters to control the semiconvergence behavior of a sequential block-iterative method. A convergence analysis is presented. We also demonstrate the performance of our strategies by examples taken from tomographic imaging. Key words: Sequential block-iterative methods, Cimmino and CAV iteration, semiconvergence, relaxation parameters, tomographic imaging 1. Introduction Ill-posed and large-scale problems, such as computed tomography, take place in many fields of mathematics and physical sciences. Usually these problems are handled by iterative methods instead of direct methods. There is an interest in regularizing iterative methods where the iteration vector can be considered as a regularized solution. Using incorrect and noisy input data, which are due to measurements or rounding errors, we obtain a more difficult problem to solve. The iteration index of an iterative method may be considered as a regularization parameter. Initially the iteration vectors approach a regularized solution. Nevertheless, continuing the iteration process often produces iteration vectors that are corrupted by noise; see [16, p. A2002] and [19, p. 1]. This phenomenon was called semiconvergence by Natterer [30, page 157]; for analysis of the phenomenon, see, ., [4, 20, 21, 23, 33, 35]. The typical overall error behavior is shown in Figure 1. If there is a reliable stopping rule then we may get a proper approximation of the sought solution, . x∗

TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.