TAILIEUCHUNG - Characterizing rational groups whose irreducible characters vanish only on involutions

A rational group is a finite group whose irreducible complex characters are rational valued. The aim of this paper is to classify rational groups G for which every nonlinear irreducible character vanishes only on involutions. | Turk J Math (2015) 39: 408 – 411 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Characterizing rational groups whose irreducible characters vanish only on involutions Saeid JAFARI, Hesam SHARIFI∗ Department of Mathematics, Faculty of Science, Shahed University, Tehran, Iran Received: • Accepted/Published Online: • Printed: Abstract: A rational group is a finite group whose irreducible complex characters are rational valued. The aim of this paper is to classify rational groups G for which every nonlinear irreducible character vanishes only on involutions. Key words: Rational group, irreducible character, zero of character 1. Introduction Let G be a finite group and χ be a nonlinear irreducible ordinary character of G . A well-known theorem of Burnside states that there exists g ∈ G such that χ(g) = 0 ; such an element g is called a zero of χ, and we say χ vanishes on g . Zeroes of characters are important in finding the structure of Sylow subgroups of a finite group. Besides well-known theorems related to zeros of characters that usually appear in reference books, .[5], this subject has been well studied by many mathematicians such as Chillag [1]. An important result obtained by Moret´o and Navarro [9] applies when zeroes of characters occur on prime order elements. Dolfi et al. in [3] also proved that if p is a prime number and all of the p -elements of G are nonvanishing, then G has a normal Sylow p -subgroup. Throughout this paper, we use the following notations and terminologies. The order of the group G and the order of the element g ∈ G are denoted by

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.