TAILIEUCHUNG - Hom-Lie 2-superalgebras

Hom-Lie 2-superalgebras can be considered as the categorification of Hom-Lie superalgebras. We give the definition of Hom-Lie 2-superalgebras and study their superderivations. We obtain the representation, deformation, and abelian extensions related to the 2-cocycle and Hom-Nijenhuis operators. | Turk J Math (2016) 40: 1 – 20 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Hom-Lie 2-superalgebras Chunyue WANG1 , Qingcheng ZHANG2,∗, Jizhu NAN3 School of Applied Sciences, Jilin Engineering Normal University, Changchun, . China 2 School of Mathematics and Statistics, Northeast Normal University, Changchun, . China 3 School of Mathematical Sciences, Dalian University of Technology, Dalian, . China 1 Received: • Accepted/Published Online: • Final Version: Abstract: Hom-Lie 2-superalgebras can be considered as the categorification of Hom-Lie superalgebras. We give the definition of Hom-Lie 2-superalgebras and study their superderivations. We obtain the representation, deformation, and abelian extensions related to the 2-cocycle and Hom-Nijenhuis operators. Moreover, we also construct a skeletal (strict) Hom-Lie 2-superalgebra from a Hom-associative Rota–Baxter superalgebra. Key words: Hom-Lie 2-superalgebras, superderivations, representations, deformations, abelian extensions, Homassociative Rota–Baxter superalgebras 1. Introduction Higher categorical structures play an important role in both string theory [2] and physics [9,15]. Some higher categorical structures are obtained by categorifying existing mathematical concepts. One of the simplest higher structures is a categorical vector space, that is, a 2-vector space. A categorical Lie algebra introduced by Baez and Crans [3], which is called a Lie 2-algebra, is a 2-vector space equipped with a skew-symmetric bilinear functor, whose Jacobi identity is replaced by the Jacobiator satisfying some coherence laws of its own. Baez and Crans [3] showed that the category of Lie 2-algebras is equivalent to the category of 2-term L∞ -algebras, so a Lie 2-algebra is often defined by a 2-term L∞ -algebra. Recently, Lie 2-algebra theories have been widely developed [4,5,10,12,14,16–19]. In .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.