TAILIEUCHUNG - Một cải tiến thuật toán Kmeans cho việc phân vùng ảnh viễn thám
Bài viết Một cải tiến thuật toán Kmeans cho việc phân vùng ảnh viễn thám trình bày một tiếp cận kết hợp thuật toán K-Means với kĩ thuật Wavelet cho việc khởi tạo tâm hiệu quả nhằm tăng tốc độ phân vùng ảnh viễn thám. | Kỷ yếu Hội nghị Quốc gia lần thứ VIII về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR); Hà Nội, ngày 9-10/7/2015 MỘT CẢI TIẾN THUẬT TOÁN KMEANS CHO VIỆC PHÂN VÙNG ẢNH VIỄN THÁM Nguyễn Tu Trung1, Ngô Hoàng Huy1, Vũ Văn Thỏa2, Đặng Văn Đức1 Viện Công nghệ thông tin, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, 2 Học Viện Công nghệ Bưu chính Viễn thông nttrung@, nhhuy@, thoa236@, dvduc@ 1 TÓM TẮT - Phân vùng ảnh viễn thám là vấn đề được các nhà nghiên cứu viễn thám quan tâm. Ảnh viễn thám có thể có nhiều kênh, độ phân giải rất cao. Có nhiều kĩ thuật phân vùng khác nhau như K-Means, C-Means, Watersed,. Trong đó, thuật toán K-Means được sử dụng và ứng dụng rất phổ biến cho việc phân vùng ảnh viễn thám. Tuy nhiên, khi phân vùng ảnh viễn thám kích thước lớn, tốc độ hội tụ của thuật toán vẫn rất chậm. Bài báo này trình bày một tiếp cận kết hợp thuật toán K-Means với kĩ thuật Wavelet cho việc khởi tạo tâm hiệu quả nhằm tăng tốc độ phân vùng ảnh viễn thám. Từ khóa - Phân cụm, Phân vùng ảnh, kmeans, wavelet. I. GIỚI THIỆU Xử lý ảnh viễn thám nói chung và phân vùng ảnh (hay phân cụm) viễn thám nói riêng là vấn đề được nghiên cứu từ rất lâu và hiện tại vẫn đang được quan tâm. Phân cụm là một quy trình dùng để trích chọn những nét chính của các đối tượng nền bởi việc định nghĩa các vùng tương ứng. Nhiệm vụ của chức năng phân vùng ảnh là từ ảnh đa ban đầu, tiến hành xử lý và phân chia thành các vùng, các cụm khác nhau. Hiện nay, có nhiều phương pháp phân vùng khác nhau như: Các phương pháp hình thái, Các phương pháp họ K-means, Mô hình pha trộn Gaussian có giới hạn (FGMM), Tách và hợp, Các mô hình Markov,. Hầu hết các phương pháp chỉ sử dụng cường độ của mỗi điểm ảnh để định nghĩa các vùng, nhưng đưa ra các phân đoạn rất hỗn tạp, cụ thể với các ảnh đa phổ có độ phân giải cao. Hiện nay, một số thuật toán bao gồm thông tin ngữ cảnh trong quy trình để giảm bớt tính hỗn tạp của các phân đoạn. Trong đó một số thông tin ngữ cảnh
đang nạp các trang xem trước